Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the Limit Regularity in Sobolev and Besov Scales Related to Approximation Theory

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We study the interrelation between the limit \(L_p(\Omega )\)-Sobolev regularity \(\overline{s}_p\) of (classes of) functions on bounded Lipschitz domains \(\Omega \subseteq \mathbb {R}^d\), \(d\ge 2\), and the limit regularity \(\overline{\alpha }_p\) within the corresponding adaptivity scale of Besov spaces \(B^\alpha _{\tau ,\tau }(\Omega )\), where \(1/\tau =\alpha /d+1/p\) and \(\alpha >0\) (\(p>1\) fixed). The former determines the convergence rate of uniform numerical methods, whereas the latter corresponds to the convergence rate of best N-term approximation. We show how additional information on the Besov or Triebel–Lizorkin regularity may be used to deduce upper bounds for \(\overline{\alpha }_p\) in terms of \(\overline{s}_p\) simply by means of classical embeddings and the extension of complex interpolation to suitable classes of quasi-Banach spaces due to Kalton et al. (in: De Carli and Milman (ed) Interpolation theory and applications, American Mathematical Society, Providence, 2007). The results are applied to the Poisson equation, to the p-Poisson problem, and to the inhomogeneous stationary Stokes problem. In particular, we show that already established results on the Besov regularity for the Poisson equation are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balci, AKh, Diening, L., Weimar, M.: Higher order Calderón-Zygmund estimates for the \(p\)-Laplace equation. J. Differ. Equ. 268, 590–635 (2020)

    Article  Google Scholar 

  2. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin (1976)

    Book  Google Scholar 

  3. Cioica, P., Dahlke, S., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.: Spatial Besov regularity for stochatic partial differential equations on Lipschitz domains. Studia Math 207(3), 197–234 (2011)

    Article  MathSciNet  Google Scholar 

  4. Costabel, M.: On the limit Sobolev regularity for Dirichlet and Neumann problems on Lipschitz domains. Math. Nachr. 292, 2165–2173 (2019)

    Article  MathSciNet  Google Scholar 

  5. Dahlke, S.: Besov regularity for elliptic boundary value problems on polygonal domains. Appl. Math. Lett. 12, 31–38 (1999)

    Article  MathSciNet  Google Scholar 

  6. Dahlke, S., Dahmen, W., DeVore, R.A.: Nonlinear approximation and adaptive techniques for solving elliptic operator equations. In: Dahmen, W., Kurdila, A., Oswald, P. (eds.) Multsicale Wavelet Methods for Partial Differential Equations, pp. 237–283. Academic Press, San Diego (1997)

    Chapter  Google Scholar 

  7. Dahlke, S., DeVore, R.A.: Besov regularity for elliptic boundary value problems. Comm. Partial Differ. Equ. 22(1–2), 1–16 (1997)

    Article  MathSciNet  Google Scholar 

  8. Dahlke, S., Diening, L., Hartmann, C., Scharf, B., Weimar, M.: Besov regularity of solutions to the \(p\)-Poisson equation. Nonlinear Anal. 130, 298–329 (2016)

    Article  MathSciNet  Google Scholar 

  9. Dahlke, S., Harbrecht, H., Utzinger, M., Weimar, M.: Adaptive wavelet BEM for boundary integral equations: theory and numerical experiments. Numer. Funct. Anal. Optim. 39(2), 208–232 (2018)

    Article  MathSciNet  Google Scholar 

  10. Dahlke, S., Sickel, W.: Besov regularity for the poisson equation in smooth and polyhedral cones. In: Maz’ya, V. (ed.) Sobolev Spaces in Mathematics II, Applications to Partial Differential Equations, pp. 123–146. Springer, New York (2008)

    MATH  Google Scholar 

  11. Dahlke, S., Sickel, W.: On Besov regularity of solutions to nonlinear elliptic partial differential equations. Rev. Mat. Complut. 26(1), 115–145 (2013)

    Article  MathSciNet  Google Scholar 

  12. Dahlke, S., Weimar, M.: Besov regularity for operator equations on patchwise smooth manifolds. J. Found. Comput. Math. 15(6), 1533–1569 (2015)

    Article  MathSciNet  Google Scholar 

  13. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  14. Ebmeyer, C.: Mixed boundary value problems for nonlinear elliptic systems with p-structure in polyhedral domains. Math. Nachr. 236, 91–108 (2002)

    Article  MathSciNet  Google Scholar 

  15. Eckhardt, F.: Besov regularity for the Stokes and the Navier-Stokes system in polyhedral domains. ZAMM 95(11), 1161–1173 (2015)

    Article  MathSciNet  Google Scholar 

  16. Eckhardt, F., Cioica-Licht, P.A., Dahlke, S.: Besov regularity for the stationary Navier-Stokes equation on bounded Lipschitz domains. Appl. Anal. 97(3), 466–485 (2018)

    Article  MathSciNet  Google Scholar 

  17. Fabes, E., Mendez, O., Mitrea, M.: Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian on Lipschitz domains. J. Funct. Anal. 159, 323–368 (1998)

    Article  MathSciNet  Google Scholar 

  18. Gaspoz, F.D., Morin, P.: Approximation classes for adaptive higher order finite element approximation. Math. Comp. 83, 2127–2160 (2014)

    Article  MathSciNet  Google Scholar 

  19. Grisvard, P.: Elliptic problems in Nonsmooth domains. Mongr. Stud. Math. 24. Pitman, Boston/London/Melbourne, (1985)

  20. Grisvard, P.: Singularities in boundary value problems. In: Recherches en mathématiques appliquées 22. Springer, Paris/Berlin, (1992)

  21. Hansen, M.: Nonlinear approximation rates and Besov regularity for elliptic PDEs on polyhedral domains. J. Found. Comput. Math. 15(2), 561–589 (2015)

    Article  MathSciNet  Google Scholar 

  22. Hartmann, C., Weimar, M.: Besov regularity of solutions to the \(p\)-Poisson equation in the vicinity of a vertex of a polygonal domain. Results Math. 73(41), 1–28 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Jerison, D.S., Kenig, C.E.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)

    Article  MathSciNet  Google Scholar 

  24. Kalton, N., Mayboroda, S., Mitrea, M.: Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations. In: De Carli, L., Milman, M. (eds.) Interpolation Theory and Applications (Contemporary Mathematics 445), pp. 121–177. American Mathematical Society, Providence, RI (2007)

    Chapter  Google Scholar 

  25. Lindner, F.: Singular behavior of the solution to the stochastic heat equation on a polygonal domain. Stoch. Partial Differ. Equ. Anal. Comput. 2(2), 146–195 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Mayboroda, S.: The Poisson Problem on Lipschitz Domains. PhD thesis, University of Missouri-Columbia (2005)

  27. Maz’ya, V.G., Roßmann, J.: Elliptic equations in polyhedral domains. Math. Surveys Monogr. 162. American Mathematical Society, Providence, RI, (2010)

  28. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344, 1–241 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order. Nemytskij Operators and Nonlinear Partial Differential Equations. de Gruyter, Berlin/New York (1996)

    Book  Google Scholar 

  30. Savaré, G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152, 176–201 (1998)

    Article  MathSciNet  Google Scholar 

  31. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel/Boston/Stuttgart (1983)

    Book  Google Scholar 

  32. Triebel, H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  33. Triebel, H.: Function Spaces and Wavelets on Domains. EMS Tracts in Mathematics, vol. 7. European Mathematical Society (EMS), Zürich (2008)

    Book  Google Scholar 

  34. Weimar, M.: Almost diagonal matrices and Besov-type spaces based on wavelet expansions. J. Fourier Anal. Appl. 22(2), 251–284 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable comments and their constructive suggestions which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Weimar.

Additional information

Communicated by Dahlke.

Dedicated to Prof. Dr. Stephan Dahlke on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Basics from Function Space Theory

Appendix: Basics from Function Space Theory

In this supplementary section we collect the main definitions and assertions concerning function spaces on domains which are needed throughout the paper. Here ‘domain’ always means ‘non-empty, connected, open set’. Special attention is paid to bounded Lipschitz domains \(\Omega \subseteq \mathbb {R}^d\), \(d\in \mathbb {N}\), as defined, e.g., in Triebel [32, Sect. 1.11.4].

1.1 Besov and Triebel–Lizorkin Spaces

In accordance with Triebel [31] we use the Fourier analytic approach towards Besov and Triebel–Lizorkin spaces on \(\mathbb {R}^d\) and define the corresponding spaces on domains by restriction.

Let \(d\in \mathbb {N}\). By \(\mathcal {S}(\mathbb {R}^d)\) we denote the Schwartz space of all complex-valued rapidly decreasing \(\mathcal {C}^\infty \) functions on \(\mathbb {R}^d\) and \(\mathcal {S}'(\mathbb {R}^d)\) denotes its dual space of tempered distributions. Moreover, for domains \(\Omega \subseteq \mathbb {R}^d\) we let \(\mathcal {D}(\Omega ):=\mathcal {C}_0^\infty (\Omega )\) denote the collection of all complex-valued \(\mathcal {C}^\infty \) functions in \(\mathbb {R}^d\) with compact support in \(\Omega \) and denote by \(\mathcal {D}'(\Omega )\) its dual space of distributions on \(\Omega \). As usual, we say two functionals f and g equal each other in \(\mathcal {S}'(\mathbb {R}^d)\) or \(\mathcal {D}'(\Omega )\) if

$$\begin{aligned} f(\varphi )=g(\varphi ) \qquad \text {for all }\, \varphi \,\text { from }\, \mathcal {S}(\mathbb {R}^d) \,\text { or }\, \mathcal {D}(\Omega ), \,\text { respectively}. \end{aligned}$$

For \(g\in \mathcal {S}'(\mathbb {R}^d)\) we denote by \(g_{|_{\Omega }}\) the restriction of g to \(\Omega \) which means that

$$\begin{aligned} g_{|_{\Omega }} \in \mathcal {D}'(\Omega ) \qquad \text {and} \qquad (g_{|_{\Omega }})(\varphi ):=g(\varphi ) \qquad \text {for all} \qquad \varphi \in \mathcal {D}(\Omega ). \end{aligned}$$

Note that this is meaningful since \(\mathcal {D}(\Omega )\subseteq \mathcal {D}(\mathbb {R}^d)\subseteq \mathcal {S}(\mathbb {R}^d)\).

In addition, let \(\mathcal {F}\) and \(\mathcal {F}^{-1}\) denote the (extension of the) Fourier transform, respectively its inverse, on \(\mathcal {S}'(\mathbb {R}^d)\). Fix an arbitrary \(\phi _0 \in \mathcal {S}(\mathbb {R}^d)\) such that

$$\begin{aligned} \phi _0(x)=1 \quad \text {if} \quad \left| x \right| _2\le 1 \qquad \text {and} \qquad \phi _0(x)=0 \quad \text {if} \quad \left| x \right| _2\ge \frac{3}{2}. \end{aligned}$$

Then the collection \(\Phi :=(\phi _k)_{k\in \mathbb {N}_0}\), with

$$\begin{aligned} \phi _k(x):=\phi _0(2^{-k}x)-\phi _0(2^{-k+1}x), \qquad x\in \mathbb {R}^d,\qquad k\in \mathbb {N}, \end{aligned}$$

defines a smooth dyadic resolution of unity and we have

$$\begin{aligned} f = \sum _{k=0}^\infty \mathcal {F}^{-1}[\phi _k\, \mathcal {F}f] \qquad \text {(convergence in }\mathcal {S}'(\mathbb {R}^d)) \end{aligned}$$

for all \(f\in \mathcal {S}'(\mathbb {R}^d)\). Due to the celebrated Paley-Wiener-Schwartz-Theorem, the building blocks \(\mathcal {F}^{-1}[\phi _k\, \mathcal {F}f]\), \(k\in \mathbb {N}_0\), are actually entire analytic functions; see, for instance, Triebel [31, Sect. 1.2.1]. As usual, for \(0<q<\infty \), \(\ell _q(\mathbb {N}_0)\) is the space of q-summable scalar-valued sequences over \(\mathbb {N}_0\) (bounded sequences, if \(q=\infty \)).

Definition A.1

For \(d\in \mathbb {N}\) choose \(\Phi \) as above and let \(\Omega \subsetneq \mathbb {R}^d\) denote an arbitrary domain. Moreover, let \(s\in \mathbb {R}\) and \(0<p,q\le \infty \).

  1. (i)

    The set \(B^s_{p,q}(\mathbb {R}^d):=\left\{ f\in \mathcal {S}'(\mathbb {R}^d) \; \big | \;\left\| f \; \big | \;B^s_{p,q}(\mathbb {R}^d) \right\| <\infty \right\} \), quasi-normed by

    $$\begin{aligned} \left\| f \; \big | \;B^s_{p,q}(\mathbb {R}^d) \right\| := \left\| \left( 2^{ks} \left\| \mathcal {F}^{-1}[\phi _k\, \mathcal {F}f](\cdot ) \; \big | \;L_p(\mathbb {R}^d) \right\| \right) _{k\in \mathbb {N}_0} \; \big | \;\ell _q(\mathbb {N}_0) \right\| , \end{aligned}$$

    is called Besov space.

  2. (ii)

    If \(p<\infty \), then the set \(F^s_{p,q}(\mathbb {R}^d):=\left\{ f\in \mathcal {S}'(\mathbb {R}^d) \; \big | \;\left\| f \; \big | \;F^s_{p,q}(\mathbb {R}^d) \right\| <\infty \right\} \), quasi-normed by

    $$\begin{aligned} \left\| f \; \big | \;F^s_{p,q}(\mathbb {R}^d) \right\| := \left\| \left\| \left( 2^{ks} \left| \mathcal {F}^{-1}[\phi _k\, \mathcal {F}f](\cdot ) \right| \right) _{k\in \mathbb {N}_0} \; \big | \;\ell _q(\mathbb {N}_0) \right\| \; \big | \;L_p(\mathbb {R}^d) \right\| , \end{aligned}$$

    is called Triebel–Lizorkin space.

  3. (iii)

    If \(A\in \{B,F\}\) with \(p<\infty \) for \(A=F\), then the set

    $$\begin{aligned} A^s_{p,q}(\Omega ):=\left\{ f \in \mathcal {D}'(\Omega ) \; \big | \;\text {there exists } g\in A^{s}_{p,q}(\mathbb {R}^d) \text { with } g_{|_{\Omega }} = f \text { in } \mathcal {D}'(\Omega ) \right\} , \end{aligned}$$

    quasi-normed by

    $$\begin{aligned} \left\| f \; \big | \;A^s_{p,q}(\Omega ) \right\| := \inf _{\begin{array}{c} g\in A^{s}_{p,q}(\mathbb {R}^d)\\ g_{|_{\Omega }} = f \text { in } \mathcal {D}'(\Omega ) \end{array}} \left\| g \; \big | \;A^{s}_{p,q}(\mathbb {R}^d) \right\| , \end{aligned}$$

    is called Besov resp. Triebel–Lizorkin space on \(\Omega \).

Standard proofs show that the spaces introduced above are quasi-Banach spaces (Banach iff \(\min \{p,q\}\ge 1\) and Hilbert iff \(p=q=2\)) and that different \(\Phi \) provide equivalent quasi-norms, see, e.g., Triebel [31, Sect. 2.3.2]. Furthermore, these scales of spaces cover a variety of classical function spaces—such as, e.g., Lebesgue, Sobolev(-Slobodeckij), Bessel potential, Lipschitz, Hölder(-Zygmund), or Hardy spaces—as special cases. Besides our Fourier analytic definition, there is a big variety of other descriptions of these spaces which are equivalent at least for large ranges of parameters. To give an example, we note that at least for

$$\begin{aligned} s > \sigma _{p}:= d \, \max \left\{ \frac{1}{p}-1,0\right\} \end{aligned}$$

the spaces \(A^s_{p,q}(\mathbb {R}^d)\) (and also \(A^{s}_{p,q}(\Omega )\) for bounded Lipschitz domains \(\Omega \subseteq \mathbb {R}^d\)) exclusively contain regular distributions, i.e., functions, which makes it possible to characterize them as subspaces of some Lebesgue space by means of iterated differences. For details we refer to Triebel [32, Sect. 1.11.9].

1.2 Sobolev Spaces

We follow the usual approach and define the following Sobolev-type spaces based on Besov and Triebel–Lizorkin spaces.

Definition A.2

For \(d\in \mathbb {N}\) let \(\Omega \subseteq \mathbb {R}^d\) denote a bounded Lipschitz domain. Then we set

$$\begin{aligned}&W^m_p(\Omega ):=F^m_{p,2}(\Omega ),&m\in \mathbb {N}_0, 1<p<\infty ,&\quad \text {(Sobolev)}\\&W^s_p(\Omega ):=F^s_{p,p}(\Omega )=B^s_{p,p}(\Omega ),&0<s\notin \mathbb {N}, 1\le p< \infty ,&\quad \text {(Sobolev}\!-\!\text {Slobodeckij)}\\&W^s_p(\Omega ):=\left[ W^{-s}_{p',0}(\Omega ) \right] ',&s<0, 1<p<\infty ,&\\&H^s_p(\Omega ):=F^s_{p,2}(\Omega ),&s\in \mathbb {R}, 1<p<\infty ,&\quad \text {(Bessel potential)}\\&H^s(\Omega ):=H^s_2(\Omega )=F^s_{2,2}(\Omega )=B^s_{2,2}(\Omega ),&s\in \mathbb {R},&\quad \text {(Sobolev}\!-\!\text {Hilbert)} \end{aligned}$$

where for \(1<p<\infty \) the index \(p'\) is given by \(1/p+1/p'=1\) and \(W_{p,0}^s(\Omega )\) denotes the closure of \(\mathcal {C}_0^\infty (\Omega )\) w.r.t. the norm \(\left\| \cdot \; \big | \;W_p^s(\Omega ) \right\| \) if \(s>0\).

It is worth noting that these definitions are equivalent with the common definitions of Sobolev(-Slobodeckij) and Bessel potential spaces: For \(s=m\in \mathbb {N}_0\) we have

$$\begin{aligned} W^m_p(\Omega )=\bigg \{f\in L_p(\Omega ) \,\bigg |\, \left\| f \; \big | \;W^m_p(\Omega ) \right\| :=\bigg [ \sum _{\left| \alpha \right| _1\le m} \left\| D^\alpha f \; \big | \;L_p(\Omega ) \right\| ^p \bigg ]^{1/p}<\infty \bigg \}, \end{aligned}$$

see Triebel [32, Theorem 1.122], while \(W^s_p(\Omega )=B^s_{p,p}(\Omega )\) for \(0<s\notin \mathbb {N}\) coincides with the definition of Sobolev-Slobodeckij spaces as real interpolation space of \(L_p(\Omega )\) with \(W^m_p(\Omega )\) for some \(m\in \mathbb {N}\) with \(m>s\) and suitable parameters; see, e.g., DeVore [13, Sect. 4.6].

1.3 Embeddings

The scales of Besov and Triebel–Lizorkin spaces \(A^s_{p,q}(\Omega )\) on bounded Lipschitz domains satisfy various embeddings. Let us mention a few of them:

Proposition A.3

For \(d\in \mathbb {N}\) let \(\Omega \subseteq \mathbb {R}^d\) denote a bounded Lipschitz domain. Further assume \(s,s_0,s_1\in \mathbb {R}\) and let \(0<p,p_0,p_1,q,q_0,q_1\le \infty \).

  1. (i)

    Assume additionally that \(p<\infty \). Then

    $$\begin{aligned} B^{s}_{p,q_0}(\Omega ) \hookrightarrow F^{s}_{p,q}(\Omega ) \hookrightarrow B^{s}_{p,q_1}(\Omega ). \end{aligned}$$

    holds if, and only if, we have \(q_0 \le \min \{p,q\} \le \max \{p,q\}\le q_1\).

  2. (ii)

    If additionally \(p_0<p_1<\infty \) and \(s_0-d/p_0=s_1-d/p_1\), then

    $$\begin{aligned} F^{s_0}_{p_0,q_0}(\Omega ) \hookrightarrow F^{s_1}_{p_1,q_1}(\Omega ). \end{aligned}$$
  3. (iii)

    If additionally \(A\in \{B,F\}\) (and \(p<\infty \) if \(A=F\)), as well as \(q_0\le q_1\), then

    $$\begin{aligned} A^s_{p,q_0}(\Omega ) \hookrightarrow A^{s}_{p,q_1}(\Omega ). \end{aligned}$$
  4. (iv)

    If additionally \(X,Y\in \{B,F\}\) and

    $$\begin{aligned} s_0-s_1 > d \, \max \left\{ \frac{1}{p_0} -\frac{1}{p_1}, 0 \right\} , \end{aligned}$$

    then

    $$\begin{aligned} X^{s_0}_{p_0,q_0}(\Omega ) \hookrightarrow Y^{s_1}_{p_1,q_1}(\Omega ) \end{aligned}$$

    (with finite integrability parameter for F-spaces).

  5. (v)

    Assume additionally that \(p_0<p<p_1\) and

    $$\begin{aligned} s_0-\frac{d}{p_0} = s-\frac{d}{p} =s_1-\frac{d}{p_1}. \end{aligned}$$

    Then

    $$\begin{aligned} B^{s_0}_{p_0,q_0}(\Omega ) \hookrightarrow F^s_{p,q}(\Omega ) \hookrightarrow B^{s_1}_{p_1,q_1}(\Omega ) \end{aligned}$$

    holds if, and only if, we have \(q_0\le p\le q_1\).

Proof

For (i), (ii), and (v) see, e.g., Triebel [32, p. 60] and the references therein. For (iii) and (iv) additionally consult Triebel [31, Proposition 2 in Sect. 2.3.2], as well as [33, Theorem 4.33 and Remark 4.34]. \(\square \)

Note that Proposition A.3(iv) particularly implies that for \(A\in \{B,F\}\) we have

$$\begin{aligned}&A^{s_0}_{p_0,q}(\Omega ) \hookrightarrow W^{s_1}_{p_1}(\Omega ) \qquad \text {if} \qquad s_0>s_1\ge 0, \text { as well as } 1<p_1 \le p_0 \le \infty ,\\&\quad \text { and } 0<q\le \infty \end{aligned}$$

with \(p_0<\infty \) if \(A=F\), since \(W^{s_1}_p(\Omega )\) can be identified with \(F^{s_1}_{p,2}(\Omega )\) (if \(s_1\in \mathbb {N}\)) or \(F^{s_1}_{p,p}(\Omega )\) (if \(0<s_1 \notin \mathbb {N}\)).

1.4 Complex Interpolation

For some open set \(\Omega \) let \(X(\Omega )\) and \(Y(\Omega )\) denote quasi-normed spaces of complex-valued functions or distributions on \(\Omega \). Then, under certain conditions, the (extended) complex interpolation method is applicable and yields further quasi-normed spaces of functions on \(\Omega \). Besides other useful properties these spaces, usually denoted by \([X(\Omega ),Y(\Omega )]_\theta \), \(\theta \in (0,1)\), satisfy

$$\begin{aligned} X(\Omega )\cap Y(\Omega ) \hookrightarrow [X(\Omega ),Y(\Omega )]_\theta \hookrightarrow X(\Omega )+ Y(\Omega ). \end{aligned}$$

Thus, in particular, any set \(S(\Omega )\subset X(\Omega )\cap Y(\Omega )\) is also contained in \([X(\Omega ),Y(\Omega )]_\theta \) for all \(\theta \in (0,1)\). For details we refer to Bergh and Löfström [2] and Kalton et al. [24].

It turns out that the scales of Besov and Triebel–Lizorkin spaces \(A^s_{p,q}(\Omega )\) on bounded Lipschitz domains behave well w.r.t. this method:

Proposition A.4

(Kalton et al. [24, Theorem 9.4]) For \(d\in \mathbb {N}\) let \(\Omega \subseteq \mathbb {R}^d\) denote a bounded Lipschitz domain and assume \(\theta \in (0,1)\). Moreover, let \(A\in \{B,F\}\), as well as \(s,s_0,s_1\in \mathbb {R}\), and \(0<p,p_0,p_1,q,q_0,q_1\le \infty \) (with \(p_0,p_1<\infty \) for \(A=F\)), and \(\min \{q_0,q_1\}<\infty \). Then

$$\begin{aligned} s=(1-\theta )\,s_0 + \theta \, s_1, \qquad \frac{1}{p}=\frac{1-\theta }{p_0}+\frac{\theta }{p_1}, \qquad \text {and}\qquad \frac{1}{q}=\frac{1-\theta }{q_0}+\frac{\theta }{q_1} \end{aligned}$$

implies

$$\begin{aligned} \left[ A^{s_0}_{p_0,q_0}(\Omega ), A^{s_1}_{p_1,q_1}(\Omega ) \right] _{\theta } = A^{s}_{p,q}(\Omega ) \end{aligned}$$

in the sense of equivalent quasi-norms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cioica-Licht, P.A., Weimar, M. On the Limit Regularity in Sobolev and Besov Scales Related to Approximation Theory. J Fourier Anal Appl 26, 10 (2020). https://doi.org/10.1007/s00041-019-09707-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-019-09707-8

Keywords

Mathematics Subject Classification

Navigation