Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

System of generalized nonlinear variational-like inequalities and nearly asymptotically nonexpansive mappings: graph convergence and fixed point problems

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

In this paper, with the goal of investigating the problem of finding a common element of the set of fixed points of a nearly asymptotically nonexpansive mapping and the set of solutions of a system of generalized nonlinear variational-like inequalities, an iterative algorithm is proposed. The notions of graph convergence and P\(\eta\)-proximal point mapping are used and a new equivalence relationship between graph convergence and proximal-point mappings convergence of a sequence of lower semicontinuous and \(\eta\)-subdifferentiable proper functionals is established. Finally, the strong convergence of the sequence generated by our suggested iterative algorithm to a common element of the two sets mentioned above are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad, R., Siddiqi, A.H., Khan, Z.: Proximal point algorithm for generalized multivalued nonlinear quasi-variational-like inclusions in Banach spaces. Appl. Math. Comput. 163, 295–308 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization 70(3), 545–574 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alber, Y.I., Chidume, C.E., Zegeye, H.: Approximating fixed points of total asymptotically nonexpansive mappings. Fixed Point Theory Appl. 2006, 10673 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alimohammady, M., Balooee, J., Cho, Y.J., Roohi, M.: New perturbed finite step iterative algorithms for a system of extended generalized nonlinear mixed quasi-variational inclusions. Comput. Math. Appl. 60, 2953–2970 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ansari, Q.H., Balooee, J., Yao, J.-C.: Extended general nonlinear quasi-variational inequalities and projection dynamical systems. Taiwan. J. Math. 17(4), 1321–1352 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ansari, Q.H., Balooee, J., Yao, J.-C.: Iterative algorithms for systems of extended regularized nonconvex variational inequalities and fixed point problems. Appl. Anal. 93(5), 972–993 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Attouch, H.: Variational Convergence for Functions and Operators, Applied Mathematics Series. Pitman, London (1984)

    MATH  Google Scholar 

  8. Balooee, J.: Iterative algorithm with mixed errors for solving a new system of generalized nonlinear variational-like inclusions and fixed point problems in Banach spaces. Chin. Ann. Math. 34B(4), 593–622 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balooee, J.: Resolvent algorithms for system of generalized nonlinear variational inclusions and fixed point-problems. Afr. Math. 25(4), 1023–1042 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Balooee, J., Cho, Y.J.: Algorithms for solutions of extended general mixed variational inequalities and fixed points. Optim. Lett. 7, 1929–1955 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Balooee, J., Cho, Y.J.: Convergence and stability of iterative algorithms for mixed equilibrium problems and fixed point problems in Banach spaces. J. Nonlinear Convex Anal. 14(3), 601–626 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Banach, S.: Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fund. Math. 3, 133–181 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bruck, R., Kuczumow, T., Reich, S.: Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform opial property. Colloq. Math. 65(2), 169–179 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, S.S., Joseph Lee, H.W., Chan, C.K., Wang, L., Qin, L.J.: Split feasibility problem for quasi-nonexpansive multi-valued mappings and total asymptotically strict pseduo-contracive mapping. Appl. Math. Comput. 219(20), 10416–10424 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Chen, J.Y., Wong, N.-C., Yao, J.C.: Algorithms for generalized co-complementarity problems in Banach spaces. Comput. Math. Appl. 43, 49–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chidume, C.-E., Ofoedu, E.U.: Approximation of common fixed points for finite families of total asymptotically nonexpansive mappings. J. Math. Anal. Appl. 333, 128–141 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Craven, B.D.: Invex functions and constrained local minima. Bull. Austral. Math. Soc. 24, 357–366 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Diestel, J.: Geometry of Banach Space-selected Topics. Lecture Notes in Mathematics, vol. 485. Springer-Verlag, New York/Berlin (1975)

  19. Ding, X.P., Luo, C.L.: Perturbed proximal point algorithms for general quasi-variational-like inclusions. J. Comput. Appl. Math. 113, 153–165 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ding, X.P., Tan, K.K.: A minimax inequality with applications to existence of equilibrium point and fixed point theorems. Colloq. Math. 63, 233–247 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ding, X.P., Xia, F.Q.: A new class of completely generalized quasi-variational inclusions in Banach spaces. J. Comput. Appl. Math. 147, 369–383 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goebel, K., Kirk, W.A.: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35, 171–174 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goebel, K., Kirk, W. A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28, p. 244, Cambridge University Press, Cambridge (1990)

  24. Hanner, O.: On the uniform convexity of \(L^p\) and \(l^p\). Ark. Mat. 3, 239–244 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hanson, M.A.: On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Harder, A.M., Hicks, T.L.: Stability results for fixed-point iteration procedures. Math. Jpn. 33(5), 693–706 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Huang, N.J., Bai, M.R., Cho, Y.J., Kang, S.M.: Generalized nonlinear mixed quasi-variational inequalities. Comput. Math. Appl. 40, 205–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, N.J., Fang, Y.P., Cho, Y.J.: Perturbed three-step approximation processes with errors for a class of general implicit variational inclusions. J. Nonlinear Convex Anal. 4, 301–308 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Kazmi, K.R., Bhat, M.I.: Convergence and stability of iterative algorithms of generalized set-valued variational-like inclusions in Banach spaces. Appl. Math. Comput. 166, 164–180 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Kazmi, K.-R., Khan, F.-A.: Iterative approximation of a unique solution of a system of variational-like inclusions in real \(q\)-uniformly smooth Banach spaces. Nonlinear Anal. (TMA) 67, 917–929 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kazmi, K.-R., Khan, H.H., Ahmad, N.: Existence and iterative approximation of solutions of a system of general variational inclusions. Appl. Math. Comput. 215, 110–117 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Kirk, W.A., Sims, B. (eds.): Handbook of Metric Fixed Point Theory. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  33. Lee, C.-H., Ansari, Q.H., Yao, J.-C.: A perturbed algorithm for strongly nonlinear variational-like inclusions. Bull. Austral. Math. Soc. 62, 417–426 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, New York/Berlin (1979)

    Book  MATH  Google Scholar 

  35. Liu, L.S.: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 114–125 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, Z., Liu, M., Kang, S.M., Lee, S.: Perturbed Mann iterative method with errors for a new systems of generalized nonlinear variational-like inclusions. Math. Comput. Model. 51, 63–71 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, Z., Ume, J.-S., Kang, S.-M.: General strongly nonlinear quasivariational inequalities with relaxed Lipschitz and relaxed monotone mappings. J. Optim. Theory Appl. 114(3), 639–656 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Osilike, M.A.: Stability of the Mann and Ishikawa iteration procedures for \(\phi\)-strongly pseudocontractions and nonlinear equations of the \(\phi\)-strongly accretive type. J. Math. Anal. Appl. 277, 319–334 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Parida, J., Sahoo, M., Kumar, A.: A variational-like inequality problem. Bull. Austral. Math. Soc. 39, 225–231 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sahu, D.R.: Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces. Comment. Math. Univ. Carolin 46, 653–666 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Shehu, Y., Ogbuisi, F.U.: An iterative method for solving split monotone variational inclusion and fixed point problems. RACSAM 11(2), 503–518 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  43. Thong, D.V., Van Hieu, D.: Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems. Numer. Algorithms 82, 761-C789 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Uddin, I., Khatoon, S., Mlaiki, N., Abdeljawad, T.: A modified iteration for total asymptotically nonexpansive mappings in Hadamard spaces. AIMS Math. 6(5), 4758–4770 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, X.Q., Chen, G.Y.: A class of nonconvex functions and pre-variational inequalities. J. Math. Anal. Appl. 169, 359–373 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, X.Q., Craven, B.D.: Necessary optimality conditions with a modified subdifferential. Optimization 22, 387–400 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, J., Liu, H.: The subgradient extragradient method extended to pseudomonotone equilibrium problems and fixed point problems in Hilbert space. Optim. Lett. 14, 1803–1816 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhou, X.J., Chen, G.: Diagonal convexity conditions for problems in convex analysis and quasivariational inequalities. J. Math. Anal. Appl. 132, 213–225 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the referee and editor for their advice to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Postolache.

Additional information

Communicated by  Gradimir V. Milovanović.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balooee, J., Postolache, M. & Yao, Y. System of generalized nonlinear variational-like inequalities and nearly asymptotically nonexpansive mappings: graph convergence and fixed point problems. Ann. Funct. Anal. 13, 68 (2022). https://doi.org/10.1007/s43034-022-00212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-022-00212-6

Keywords

Mathematics Subject Classification

Navigation