Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Rank Reduction Processes for Solving Linear Diophantine Systems and Integer Factorizations: A Review

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Abaffy, Broyden and Spediacto (ABS) introduced a class of the so-called ABS methods to solve systems of linear equations. The ABS approach was specialized to solve linear Diophantine systems by Esmaeili, Mahdavi-Amiri and Spedicato. The method was extended to systems of certain linear inequalities to provide all solutions. Here, we mainly focus on the theoretical research into rank reduction processes for solving linear Diophantine systems and computing integer factorizations. Basic integer ABS algorithm, integer extended ABS (IEABS) algorithm, rank one perturbed problem, the generalized Rosser’s approach (GRA), the extended integer rank reduction process, the integer Wedderburn rank reduction formula and the associated integer biconjugation process are studied. We present an integrated integer rank reduction process, develop various integer factorizations and show their use in solving Diophantine equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaffy, J., Broyden, C.G., Spedicato, E.: A class of direct methods for linear systems. Numerische Mathematik 45, 361–376 (1984)

    Article  MathSciNet  Google Scholar 

  2. Abaffy, J., Galantai, A.: Conjugate direction methods for linear and nonlinear systems of algebraic equations. Colloquia Mathematica Societatis Janos Bolyai 50, 481–502 (1986)

    MATH  Google Scholar 

  3. Abaffy, J., Spedicato, E.: ABS Projection Algorithms, Mathematical Techniques for Linear and Nonlinear Equations. Halsted Press, Chichester (1989)

    MATH  Google Scholar 

  4. Adib, M., Mahdavi-Amiri, N., Spedicato, E.: Broyden method as an ABS algorithm. Publ. Univ. Miskolc, Ser. D, Nat. Sci. Math. 40, 3–13 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Amini, K., Mahdavi-Amiri, N.: Solving rank one perturbed linear Diophantine systems by the ABS method. Optim. Methods Softw. 21, 819–831 (2006)

    Article  MathSciNet  Google Scholar 

  6. Blankinship, W.A.: A new version of the Euclidean algorithm. Am. Math. Monthly 70, 742–745 (1963)

    Article  MathSciNet  Google Scholar 

  7. Cassels, J.W.S.: Rational Quadratic Forms. Academic Press, New York (1979)

    MATH  Google Scholar 

  8. Chen, Z., Deng, N.Y., Xue, Y.: A general algorithm for underdetermined linear systems. In: Proceedings of the First International Conference on ABS Algorithms, pp 1–13 (1992)

  9. Chou, T.J., Collins, E.E.: Algorithms for the solution of systems of linear Diophantine equations, SIAM. J. Comput. 11, 686–708 (1982)

    Google Scholar 

  10. Chu, M.T., Funderlic, R.E., Golub, G.H.: A rank one reduction formula and its applications to matrix factorizations. SIAM Rev. 37(4), 512–530 (1995)

    Article  MathSciNet  Google Scholar 

  11. Cline, R.E., Funderlic, R.E.: The rank of a difference of matrices and associated generalized inverse. Linear Alg. Appl. 24, 185–215 (1979)

    Article  MathSciNet  Google Scholar 

  12. Egervary, E.: On rank-diminshing operators and their applications to the solution of linear equations. Z. Angw. Math. Phys. 11, 376–386 (1960)

    Article  Google Scholar 

  13. Esmaeili, H., Mahdavi-Amiri, N., Spedicato, E.: Generating the integer null space and conditions for determination of an integer basis using the ABS algorithms. Bull. Iran. Math. Soc. 27(1), 1–18 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Esmaeili, H., Mahdavi-Amiri, N., Spedicato, E.: A class of ABS algorithms for linear Diophantine systems. Numerische Mathematik 90, 101–115 (2001)

    Article  MathSciNet  Google Scholar 

  15. Esmaeili, H., Mahdavi-Amiri, N., Spedicato, E.: ABS solution of a class of linear integer inequality and integer LP problems. Optim. Methods Softw. 16, 179–202 (2001)

    Article  MathSciNet  Google Scholar 

  16. Evans, D.J.: Implicit matrix elimination schemes. Int. J. Comput. Math. 48, 229–237 (1993)

    Article  Google Scholar 

  17. Evans, D.J.: Parallel implicit schemes for the solution of linear systems. In: G. Winter Althaus and E. Spedicato (eds.), Algorithms for large Scale Linear Algebraic Systems, NATO ASI Series, Series C, Mathematical and Physical Sciences, pp. 37–54. Kluwer, New York (1998)

  18. Galantai, A.: Rank reduction, factorization and conjugation. Linear Multilinear Algebra 49, 195–207 (2001)

    Article  MathSciNet  Google Scholar 

  19. Galantai, A.: Rank reduction and bordered inversion, University of Miskolc. Math. Notes 2(2), 117–126 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Galantai, A.: The rank reduction procedure of Egervary. CEJOR 18(1), 5–24 (2010)

    Article  MathSciNet  Google Scholar 

  21. Golpar-Raboky, E., Mahdavi-Amiri, N.: Diophantine quadratic equation and Smith normal form using scaled extended integer ABS algorithms. J. Optim. Theory Appl. 152(1), 75–96 (2012)

    Article  MathSciNet  Google Scholar 

  22. Golpar-Raboky, E., Mahdavi-Amiri, N.: Extended integer rank reduction formulas and Smith normal form. Linear Multilinear Algebra 61(12), 1641–1659 (2013)

    Article  MathSciNet  Google Scholar 

  23. Golpar-Raboky, E., Mahdavi-Amiri, N.: A new interpretation of the integer and real WZ factorization using block scaled ABS algorithms. Stat. Optim. Inform. Comput. 2, 243–256 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Golpar-Raboky, E., Mahdavi-Amiri, N.: WZ factorization via Abaffy–Broyden–Spedicato algorithms. Bull. Iran. Math. Soc. 40(2), 1–13 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Householder, A.S.: The Theory of Matrices in Numerical Analysis. Blasidell, New York (1964). (Dover, New York, 1975)

    MATH  Google Scholar 

  26. Khorramizadeh, M., Mahdavi-Amiri, N.: Integer extended ABS algorithms and possible control of intermediate results for linear Diophantine systems. 4OR 7, 145–167 (2009)

    Article  MathSciNet  Google Scholar 

  27. Khorramizadeh, M., Mahdavi-Amiri, N.: On solving linear Diophantine systems using generalized Rosser’s algorithm. Bull. Iran. Math. Soc. 34(2), 1–25 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Khorramizadeh, M., Mahdavi-Amiri, N.: An efficient algorithm for solving rank one perturbed linear Diophantine systems using Rosser’s approach. 4OR 7, 159–173 (2011)

    Article  MathSciNet  Google Scholar 

  29. Mahdavi-Amiri, N., Golpar-Raboky, E.: Extended rank reduction formulas containing Wedderburn and Abaffy-Broyden-Spedicato rank reducing processes. Linear Algebra Appl. 439(11), 3318–3331 (2013)

    Article  MathSciNet  Google Scholar 

  30. Mahdavi-Amiri, N., Golpar-Raboky, E.: Real and integer Wedderburn rank reduction formulas for matrix decompositions. Optim. Methods Softw. 30(4), 1–16 (2015)

    Article  MathSciNet  Google Scholar 

  31. Morita, S., Salkin, H.M.: Using the Blankinship algorithm to find the general solution of a linear Diophantine equation. Acta Inf. 13, 379–382 (1890)

    Article  MathSciNet  Google Scholar 

  32. Newman, M.: Integral Matrices. Academic Press, New York (1972)

    MATH  Google Scholar 

  33. Pohst, M., Zassenhaus, H.: Algorithmic Algebraic Number Theory. Cambridge University Press, New York (1989)

    Book  Google Scholar 

  34. Rosser, J.B.: A note on the linear Diophantine equation. Am. Math. Monthly. 48, 662–666 (1941)

    Article  MathSciNet  Google Scholar 

  35. Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Philos. Trans. R. Soc. Lond. 151, 293–326 (1861)

    Google Scholar 

  36. Spedicato, E., Bodon, E., Zunquan, X., Mahdavi-Amiri, N.: ABS methods for continous and integer linear equations and optimization. CEJOR 18, 73–95 (2010)

    Article  Google Scholar 

  37. Spedicato, E., Bodon, E., Del Popolo, A., Mahdavi-Amiri, N.: ABS methods and ABSPACK for linear systems and optimization: A review. 4OR 1, 51–66 (2003)

    Article  MathSciNet  Google Scholar 

  38. Spedicato, E., Bodon, E., Del Popolo, A., Xia, Z.: ABS algorithms for linear systems and optimization: a review and a bibliography. Ricerca Oper. 29, 39–88 (2000)

    MATH  Google Scholar 

  39. Spedicato, E., Xia, Z., Zhang, L.: The implicit LX method of the ABS class. Optim. Methods Softw. 8, 99–110 (1997)

    Article  MathSciNet  Google Scholar 

  40. Wedderburn, J.H.: Lectures on Matrices, Colloquium Publications, Vol. XVII, American Mathematical Society, New York (1934) (Dover, New York, 1964)

  41. Yalamov, P., Evans, D.J.: The WZ factorization method. Parallel Comput. 21(7), 1111–1120 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author thanks the Research Council of Qom University and the second author thanks the Research Council of Sharif University of Technology for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Effat Golpar-Raboky.

Additional information

Communicated by Davod Khojasteh Salkuyeh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golpar-Raboky, E., Mahdavi-Amiri, N. Rank Reduction Processes for Solving Linear Diophantine Systems and Integer Factorizations: A Review. Bull. Iran. Math. Soc. 46, 647–667 (2020). https://doi.org/10.1007/s41980-019-00282-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-019-00282-8

Keywords

Mathematics Subject Classification

Navigation