Abstract
Advances in GIS are increasingly focused on providing more sophisticated spatial analytical capabilities. Much of this work assumes no attribute and positional uncertainties in data. While there has been considerable research devoted to enhanced data creation techniques and metadata associated with error and uncertainty, little has been done to characterize or better understand error/uncertainty impacts in spatial analysis. This paper explores issues associated with the detection and significance of clusters under known positional uncertainty. Multiple equally likely data instances in which positional certainty is not assumed are assessed for existence of clusters. Results suggest that identified patterns can vary significantly when there is error or uncertainty in spatial data.
Similar content being viewed by others
References
Knox, E. (2002). An epidemic pattern of murder. Journal of Public Health, 24(1), 34–37.
Johnson, S. D., & Bowers, K. (2004). The stability of space–time clusters of burglary. British Journal of Criminology, 44, 55–65.
Grubesic, T. H., & Mack, E. (2008). Spatio-temporal interaction of urban crime. Journal of Quantitative Criminology, 24(3), 285–306.
Wu, X., & Grubesic, T. H. (2010). Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm. Journal of Geographical Systems, 12(4), 409–433.
Johnson, S. D. (2010). A brief history of the analysis of crime concentration. European Journal of Applied Mathematics, 21(4–5), 349–370.
Marshall, R. (1991). A review of methods for the statistical analysis of spatial patterns of disease. Journal of the Royal Statistical Society, Series A (Statistics in Society), 154(3), 421–441.
Jacquez, G. M. (1996). A k nearest neighbour test for space–time interaction. Statistics in Medicine, 15, 1935–1949.
Petridou, E., Revinthi, K., Alexander, F., Haidas, S., Koliouskas, D., Kosmidis, H., et al. (1996). Space–time clustering of childhood leukemia in Greece: Evidence supporting a viral etiology. British Journal of Cancer, 73, 1278–1283.
Kulldorff, M. (1998). Statistical methods for spatial epidemiology: Tests for randomness. In A. Gatrell & M. Löytönen (Eds.), GIS and health, 49–62. London: Taylor & Francis.
Jacquez, G. M., & Waller, L. (2000). The effect of uncertain locations on disease cluster statistics. In H. Mowrer & R. Congalton (Eds.), Quantifying spatial uncertainty in natural resources: Theory and applications for GIS and remote sensing (pp. 53–64). Boca Raton: CRC Press.
Ward, M. P., & Carpenter, T. E. (2000). Techniques for analysis of disease clustering in space and in time in veterinary epidemiology. Preventative Veterinary Medicine, 45(3–4), 257–284.
McNally, R. J., & Colver, A. F. (2008). Space–time clustering analyses of occurrence of cerebral palsy in Northern England for births 1991 to 2003. Annals of Epidemiology, 18, 108–112.
Meliker, J. (2009). Approaches for reconstructing exposures accounting for human mobility and space–time variability in environmental contaminants. Epidemiology, 20(6), S242.
Rogerson, P., & Yamada, I. (2009). Statistical detection and surveillance of geographic clusters. Boca Raton, FL: Chapman & Hall/CRC.
Tango, T. (2010). Statistical methods for disease clustering. New York: Springer.
Grubesic, T. H., Wei, R., & Murray, A. T. (2014). Spatial clustering overview and comparison: Accuracy, sensitivity, and computational expense. Annals of the Association of American Geographers, 104(6), 1134–1156.
Messner, S. F., Anselin, L., Baller, R. D., & Hawkins, D. F. (1999). The spatial patterning of county homicide rates: An application of exploratory spatial data analysis. Journal of Quantitative Criminology, 15(4), 423–450.
Harries, K. (1999). Mapping crime: Principles and practice. Washington DC: US Department of Justice.
Murray, A. T., McGuffog, I., Western, J. S., & Mullins, P. (2001). Exploratory spatial data analysis techniques for examining urban crime. British Journal of Criminology, 41, 309–329.
Grubesic, T. H. (2006). On the application of fuzzy clustering for crime hot spot detection. Journal of Quantitative Criminology, 22(1), 77–105.
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2), 209–220.
Kulldorff, M. (1997). A spatial scan statistic. Communication in Statistics, 26(6), 1481–1496.
Burra, T., Jerrett, M., Burnett, R. T., & Anderson, M. (2002). Conceptual and practical issues in the detection of local disease clusters: A study of mortality in Hamilton, Ontario. The Canadian Geographer, 46(2), 160–171.
Jacquez, G. M. (2004). Current practices in the spatial analysis of cancer: Flies in the ointment. International Journal of Health Geographics, 3(1), 22.
Olson, K., Grannis, S., & Mandl, K. (2006). Privacy protection versus cluster detection in spatial epidemiology. American Journal of Public Health, 96(11), 2002–2008.
Rushton, G., Armstrong, M. P., Gittler, J., Greene, B. R., Pavlik, C. E., West, M. M., et al. (2006). Geocoding in cancer research: A review. American Journal of Preventive Medicine, 30(2S), S16–S24.
McNally, R. J. (2010). Clustering studies for identifying the role of environmental factors in aetiology of human cancers. In D. Roy & M. T. Dorak (Eds.), Environmental factors, genes, and the development of human cancers (pp. 97–114). New York: Springer.
Meliker, J., & Sloan, C. (2011). Spatio-temporal epidemiology: Principles and opportunities. Spatial and Spatio-temporal Epidemiology, 2(1), 1–9.
Getis, A., Morrison, A. C., Gray, K., & Scott, T. W. (2003). Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. The American Journal of Tropical Medicine and Hygiene, 69(5), 494–505.
Abad-Franch, F., Monteiro, F. A., Jaramillo, N., Gurgel-Gonçalves, R., Dias, F. B. S., & Diotaiuti, L. (2009). Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: A multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Tropica, 110(2), 159–177.
Murray, A. T., & Estivill-Castro, V. (1998). Cluster discovery techniques for exploratory spatial data analysis. International Journal of Geographical Information Science, 12, 431–443.
Aldstadt, J. (2010). Spatial clustering. In M. Fischer & A. Getis (Eds.), Handbook of applied spatial analysis (pp. 279–300). Berlin: Springer.
Alexander, F. (1992). Space–time clustering of childhood acute lymphoblastic leukemia: Indirect evidence for a transmissible agent. British Journal of Cancer, 65, 589–592.
Murray, A. T., Grubesic, T. H., Rey, S., & Anselin, L. (2012). Spatial data uncertainty and cluster detection. In GIScience 2012 conference proceedings (Columbus, Ohio).
Murray, A. T., & Grubesic, T. H. (2013). Exploring spatial patterns of crime using non-hierarchical cluster analysis. In M. Leitner (Ed.), Crime modeling and mapping using geospatial technologies (pp. 105–124). New York: Springer.
Goodchild, M. F., & Gopal, S. (1989). The accuracy of spatial databases. Boca Raton, FL: CRC Press.
Heuvalink, G. (1993). Error propagation in quantitative spatial modeling: Applications in geographical information systems. Amsterdam: Koninklijk Nederlands Aardrijkskundig Genootschap.
Kiiveri, H. T. (1997). Assessing, representing and transmitting positional uncertainty in maps. International Journal of Geographical Information Systems, 11, 33–52.
Morris, A. (2003). A framework for modeling uncertainty in spatial databases. Transactions in GIS, 7(1), 83–101.
Wand, M. P., & Jones, M. C. (1995). Kernel smoothing. Boca Raton, FL: CRC Press.
Zimmerman, D. L., Fang, X., Mazumdar, S., & Rushton, G. (2007). Modeling the probability distribution of positional errors incurred by residential address geocoding. International Journal of Health Geographics. doi:10.1186/1476-072X-6-1.
Zandbergen, P. A., & Hart, T. C. (2009). Geocoding accuracy considerations in determining residency restrictions for sex offenders. Criminal Justice Policy Review, 20(1), 62–90.
Fisher, P., Comber, A., & Wadsworth, R. (2006). Approaches to uncertainty in spatial data. In R. Devillers & R. Jeansoulin (Eds.). Fundamentals of spatial data quality (pp. 43–59). New York: Wiley.
Hunter, G. J., & Goodchild, M. F. (1995). A new model for handling vector data uncertainty in geographic information systems. Journal of the Urban and Regional Information Systems Association, 8, 51–57.
Goodchild, M. F. (1998). Uncertainty: The Achilles heel of GIS? GeoInfo Systems, 8, 50–52.
Malizia, N. (2013). The effect of data inaccuracy on tests of space–time interaction. Transactions in GIS, 17(3), 426–451.
Murray, A. T., Wei, R., & Grubesic, T. H. (2014). An approach for examining alternatives attributable to locational uncertainty. Environment and Planning B, 41, 93–109.
Guptill, S. C., & Morrison, J. L. (1995). Elements of spatial data quality. Oxford: Elsevier Science.
Hunter, G. J., & Beard, K. (1992). Understanding error in spatial databases. Australian Surveyor, 37(2), 108–119.
Ratcliffe, J. H. (2004). Geocoding crime and a first estimate of a minimum acceptable hit rate. International Journal of Geographical Information Science, 18(1), 61–72.
Ward, M. H., Nuckols, J. R., Giglierano, J., Bonner, M. R., Wolter, C., Airola, M., et al. (2005). Positional accuracy of two methods of geocoding. Epidemiology, 16(4), 542–547.
Bonner, M. R., Han, D., Nie, J., Rogerson, P., Vena, J. E., & Freundenheim, J. L. (2006). Positional accuracy of geocoded addresses in epidemiological research. Epidemiology, 45(5), 512–519.
Cayo, M., & Talbot, T. (2003). Positional error in automated geocoding of residential addresses. International Journal of Health Geographies. doi:10.1186/1476-072X-2-10.
Murray, A. T., Grubesic, T. H., Wei, R., & Mack, E. A. (2011). A hybrid geocoding methodology for spatio-temporal data. Transactions in GIS, 15(6), 795–809.
Bolstad, P. V., Gessler, P., & Lillesand, T. M. (1990). Positional uncertainty in manually digitized map data. International Journal of Geographical Information Systems, 4(4), 299–412.
Chrisman, N. R. (1982). A theory of cartographic error and its measurement in digital data bases. In Proceedings of Auto-Carto 5 (pp. 159–168). Bethesda, MD: American Congress on Surveying and Mapping.
Dutton, G. (1992). Handling positional uncertainty in spatial databases. In Proceedings 5th international symposium on spatial data handling (pp. 460–469). University of South Carolina.
Goodchild, M. F., & Hunter, G. J. (1997). A simple positional accuracy measure for linear features. International Journal of Geographical Information Science, 11, 299–306.
Shi, W. Z. (1998). A generic statistical approach for modelling error in geometric features in GIS. International Journal of Geographical Information Science, 12, 131–143.
Leung, Y., & Yan, J. (1998). A locational error model for spatial features. International Journal of Geographical Information Science, 12, 607–620.
Church, R. L., Curtin, K. M., Fohl, P., Funk, C., Goodchild, M. F., Noronha, V. T., et al. (1998). Positional distortion in geographic datasets as a barrier to interpolation. In Technical papers, ACSM annual conference. Bethesda, MD: American Congress on Surveying and Mapping.
Armstrong, M. P., Rushton, G., & Zimmerman, D. L. (1999). Geographically masking health data to preserve confidentiality. Statistics in Medicine, 18(5), 497–525.
Kulldorff, M. (2010). SaTScan user guide. Retrieved from http://www.satscan.org.
Murray, A. T., Grubesic, T. H., & Wei, R. (2014). Spatially significant cluster detection. Spatial Statistics, 10, 103–116.
Jacquez, G. M. (2008). Spatial cluster analysis. In A. S. Fotheringham & J. P. Wilson (Eds.), The handbook of geographic information science (pp. 395–416). Malden, MA: Blackwell Publishing.
Murray, A. T. (2003). Site placement uncertainty in location analysis. Computers, Environment and Urban Systems, 27, 205–221.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kleinschmidt, S., Murray, A.T., Rey, S.J. et al. Spatial uncertainty in cluster detection. Spat. Inf. Res. 24, 181–189 (2016). https://doi.org/10.1007/s41324-016-0019-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41324-016-0019-9