Abstract
This work explains the stochastic simulation of reaction, diffusion, and combined reaction-diffusion using algorithms and examples of generic cases in 1D and 2D geometries. It explains the Gillespie method for the simulation of chemical reactions and extends it to the simulation of diffusion, including a new improvement on the use of multiple molecule transfers. This work is useful for undergraduate students interested in reactions and transport phenomena at the small scale and for graduate students undertaking a simulation.
Graphic abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
A literal application of Eq. (20) is not practical because of its factorial terms; hence, the values of \({\mathcal {P}}_{{\mathrm {acum}}}\) are calculated numerically through the incomplete beta function
$$\begin{aligned} {\mathcal {P}}_{{\mathrm {acum}}}\left( M,m,p_\mathrm{T}\right) =I_{p_\mathrm{T}}\left( m,M-m+1\right), \end{aligned}$$which is incorporated in many modern programming languages and is included in Numerical Recipes [45].
References
Koh W, Blackwell KT (2011) J Chem Phys 134(15):154103
Choi TJ (2013) Stochastic modeling of advection-diffusion-reaction processes in biological systems. PhD thesis, University of California at San Diego
Blackwell KT (2006) J Neurosci Methods 157(1):142–153
Brandi M (2011) Simulating a multi-scale and multi-physics model of a dendritic spine. Master’s thesis, Royal Institute of Technology, Sweden
Kotaleski JH, Blackwell KT (2010) Nat Rev Neurosci 11:239–251
Earnest TM (2016) Stochastic and physical modeling of fundamental biological processes. PhD thesis, University of Illinois at Urbana-Champaign
Manninen T, Aćimović J, Havela R, Teppola H, Linne M-L (2018) Front Neuroinform 12:20. https://doi.org/10.3389/fninf.2018.00020
Chen W, De Schutter E (2017) Front Neuroinform 11:13. https://doi.org/10.3389/fninf.2017.00013
Gillespie DT (1976) J Comp Phys 22(4):403–434
Gillespie DT (1977) J Phys Chem 81(25):2340–2361
Gillespie DT (2007) Annu Rev Phys Chem 58:35–55
Gillespie DT, Hellander A, Petzold LR (2013) J Chem Phys 138(17):170901
Cao Y, Gillespie DT, Petzold LR (2006) J Chem Phys 124(4):044109
Gillespie DT (2001) J Chem Phys 115(4):1716–1733
Anderson JM (2015) Adaptive time-stepping in the numerical solution of the reaction-diffusion master equation. PhD thesis, Ryerson University
Jedrzejewski-Szmek Z, Blackwell KT (2016) J Chem Phys 144(12):125104
Cai X, Wen J (2009) J Chem Phys 131(6):064108
Chatterjee A, Vlachos DG, Katsoulakis MA (2005) J Chem Phys 122(2):024112
Gibson MA, Bruck J (2000) J Phys Chem A 104(9):1876–1889
Cao Y, Li H, Petzold L (2004) J Chem Phys 121(9):4059–4067
Carrero-Mantilla J, Duque-Tobón S (2013) J Math Chem 51:1864–1880
Chevalier MW, El-Samad H (2009) J Chem Phys 131(5):054102
Thanh VH (2013) On efficient algorithms for stochastic simulation of biochemical reaction systems. PhD thesis, University of Trento
Bhalla US (2004) Biophys J 87(2):733–744
Elf J, Ehrenberg M (2004) Syst Biol 1(2):230–236
Hellander S, Hellander A, Petzold L (2017) J Chem Phys 147(23):234101
Isaacson SA, Zhang YJ (2018) Comp Phys 374:954–983
Padgett JMA, Ilie S (2016) AIP Adv 6(3):035217
Rodríguez JV, Kaandorp JA, Dobrzynski M, Blom JG (2006) Bioinform 22(15):1895–1901
Fu J, Wu S, Li H, Petzold LR (2014) J Comp Phys 274:524–549
Lo W-C, Zheng L, Nie Q (2016) R Soc Open Sci 3:160485. https://doi.org/10.1098/rsos.160485
Drawert B, Lawson MJ, Petzold L, Khammash M (2010) J Chem Phys 132(7):074101
Lampoudi S, Gillespie DT, Petzold LR (2009) J Chem Phys 130(9):094104
Kim C, Nonaka A, Bell JB, Garcia AL, Donev A (2017) J Chem Phys 146(12):124110
Choi T, Maurya MR, Tartakovsky DM, Subramaniam S (2012) J Chem Phys 137(18):184102
Érdi P, Lente G (2014) Stochastic chemical kinetics. Springer, New York
Wilkinson DJ (2018) Stochastic modelling for systems biology, 3rd edn. Chapman & Hall/CRC, Boca Raton
Gillespie DT (1992) Phys A Stat Theor Phys 188(1–3):404–425
Rao CV, Arkin AP (2003) J Chem Phys 118(11):4999–5010
Gillespie DT, Cao Y, Sanft KR, Petzold LR (2009) J Chem Phys 130(6):064103
Martinez-Urreaga J, Mira J, Gonzáles-Fernández C (2003) Chem Eng Ed 37(1):14–19
Argoti A, Fan LT, Cruz J, Chou S (2008) Chem Eng Ed 42(1):35–46
Sanft KR, Gillespie DT, Petzold LR (2011) IET Syst Biol 5(1):58–69
Tian T, Burrage K (2004) J Chem Phys 121(21):10356–10364
Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN. The art of scientific computing, Cambridge University Press, New York
Taylor PR (2016) Stochastic lattice-based models of diusion in biological systems. PhD thesis, Oxford University
Isaacson SA, Peskin CS (2006) SIAM J Sci Comp 28(1):47–74
Isaacson S (2009) SIAM J App Math 70(1):77–111
Acknowledgements
Supported by Grant 38600 from DIMA-Manizales.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Carrero, J.I., Loaiza, J.S. & Serna, A. Stochastic reaction, stochastic diffusion. ChemTexts 6, 14 (2020). https://doi.org/10.1007/s40828-020-0108-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s40828-020-0108-1