Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Stochastic reaction, stochastic diffusion

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

This work explains the stochastic simulation of reaction, diffusion, and combined reaction-diffusion using algorithms and examples of generic cases in 1D and 2D geometries. It explains the Gillespie method for the simulation of chemical reactions and extends it to the simulation of diffusion, including a new improvement on the use of multiple molecule transfers. This work is useful for undergraduate students interested in reactions and transport phenomena at the small scale and for graduate students undertaking a simulation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. A literal application of Eq. (20) is not practical because of its factorial terms; hence, the values of \({\mathcal {P}}_{{\mathrm {acum}}}\) are calculated numerically through the incomplete beta function

    $$\begin{aligned} {\mathcal {P}}_{{\mathrm {acum}}}\left( M,m,p_\mathrm{T}\right) =I_{p_\mathrm{T}}\left( m,M-m+1\right), \end{aligned}$$

    which is incorporated in many modern programming languages and is included in Numerical Recipes [45].

References

  1. Koh W, Blackwell KT (2011) J Chem Phys 134(15):154103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Choi TJ (2013) Stochastic modeling of advection-diffusion-reaction processes in biological systems. PhD thesis, University of California at San Diego

  3. Blackwell KT (2006) J Neurosci Methods 157(1):142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brandi M (2011) Simulating a multi-scale and multi-physics model of a dendritic spine. Master’s thesis, Royal Institute of Technology, Sweden

  5. Kotaleski JH, Blackwell KT (2010) Nat Rev Neurosci 11:239–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Earnest TM (2016) Stochastic and physical modeling of fundamental biological processes. PhD thesis, University of Illinois at Urbana-Champaign

  7. Manninen T, Aćimović J, Havela R, Teppola H, Linne M-L (2018) Front Neuroinform 12:20. https://doi.org/10.3389/fninf.2018.00020

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen W, De Schutter E (2017) Front Neuroinform 11:13. https://doi.org/10.3389/fninf.2017.00013

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gillespie DT (1976) J Comp Phys 22(4):403–434

    Article  CAS  Google Scholar 

  10. Gillespie DT (1977) J Phys Chem 81(25):2340–2361

    Article  CAS  Google Scholar 

  11. Gillespie DT (2007) Annu Rev Phys Chem 58:35–55

    Article  CAS  PubMed  Google Scholar 

  12. Gillespie DT, Hellander A, Petzold LR (2013) J Chem Phys 138(17):170901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cao Y, Gillespie DT, Petzold LR (2006) J Chem Phys 124(4):044109

    Article  PubMed  CAS  Google Scholar 

  14. Gillespie DT (2001) J Chem Phys 115(4):1716–1733

    Article  CAS  Google Scholar 

  15. Anderson JM (2015) Adaptive time-stepping in the numerical solution of the reaction-diffusion master equation. PhD thesis, Ryerson University

  16. Jedrzejewski-Szmek Z, Blackwell KT (2016) J Chem Phys 144(12):125104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cai X, Wen J (2009) J Chem Phys 131(6):064108

    Article  PubMed  CAS  Google Scholar 

  18. Chatterjee A, Vlachos DG, Katsoulakis MA (2005) J Chem Phys 122(2):024112

    Article  PubMed  CAS  Google Scholar 

  19. Gibson MA, Bruck J (2000) J Phys Chem A 104(9):1876–1889

    Article  CAS  Google Scholar 

  20. Cao Y, Li H, Petzold L (2004) J Chem Phys 121(9):4059–4067

    Article  CAS  PubMed  Google Scholar 

  21. Carrero-Mantilla J, Duque-Tobón S (2013) J Math Chem 51:1864–1880

    Article  CAS  Google Scholar 

  22. Chevalier MW, El-Samad H (2009) J Chem Phys 131(5):054102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Thanh VH (2013) On efficient algorithms for stochastic simulation of biochemical reaction systems. PhD thesis, University of Trento

  24. Bhalla US (2004) Biophys J 87(2):733–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elf J, Ehrenberg M (2004) Syst Biol 1(2):230–236

    Article  CAS  Google Scholar 

  26. Hellander S, Hellander A, Petzold L (2017) J Chem Phys 147(23):234101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Isaacson SA, Zhang YJ (2018) Comp Phys 374:954–983

    Article  CAS  Google Scholar 

  28. Padgett JMA, Ilie S (2016) AIP Adv 6(3):035217

    Article  CAS  Google Scholar 

  29. Rodríguez JV, Kaandorp JA, Dobrzynski M, Blom JG (2006) Bioinform 22(15):1895–1901

    Article  CAS  Google Scholar 

  30. Fu J, Wu S, Li H, Petzold LR (2014) J Comp Phys 274:524–549

    Article  Google Scholar 

  31. Lo W-C, Zheng L, Nie Q (2016) R Soc Open Sci 3:160485. https://doi.org/10.1098/rsos.160485

    Article  PubMed  PubMed Central  Google Scholar 

  32. Drawert B, Lawson MJ, Petzold L, Khammash M (2010) J Chem Phys 132(7):074101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lampoudi S, Gillespie DT, Petzold LR (2009) J Chem Phys 130(9):094104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kim C, Nonaka A, Bell JB, Garcia AL, Donev A (2017) J Chem Phys 146(12):124110

    Article  PubMed  CAS  Google Scholar 

  35. Choi T, Maurya MR, Tartakovsky DM, Subramaniam S (2012) J Chem Phys 137(18):184102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Érdi P, Lente G (2014) Stochastic chemical kinetics. Springer, New York

    Book  Google Scholar 

  37. Wilkinson DJ (2018) Stochastic modelling for systems biology, 3rd edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  38. Gillespie DT (1992) Phys A Stat Theor Phys 188(1–3):404–425

    Article  CAS  Google Scholar 

  39. Rao CV, Arkin AP (2003) J Chem Phys 118(11):4999–5010

    Article  CAS  Google Scholar 

  40. Gillespie DT, Cao Y, Sanft KR, Petzold LR (2009) J Chem Phys 130(6):064103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Martinez-Urreaga J, Mira J, Gonzáles-Fernández C (2003) Chem Eng Ed 37(1):14–19

    CAS  Google Scholar 

  42. Argoti A, Fan LT, Cruz J, Chou S (2008) Chem Eng Ed 42(1):35–46

    CAS  Google Scholar 

  43. Sanft KR, Gillespie DT, Petzold LR (2011) IET Syst Biol 5(1):58–69

    Article  CAS  PubMed  Google Scholar 

  44. Tian T, Burrage K (2004) J Chem Phys 121(21):10356–10364

    Article  CAS  PubMed  Google Scholar 

  45. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN. The art of scientific computing, Cambridge University Press, New York

    Google Scholar 

  46. Taylor PR (2016) Stochastic lattice-based models of diusion in biological systems. PhD thesis, Oxford University

  47. Isaacson SA, Peskin CS (2006) SIAM J Sci Comp 28(1):47–74

    Article  Google Scholar 

  48. Isaacson S (2009) SIAM J App Math 70(1):77–111

    Article  Google Scholar 

Download references

Acknowledgements

Supported by Grant 38600 from DIMA-Manizales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Carrero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrero, J.I., Loaiza, J.S. & Serna, A. Stochastic reaction, stochastic diffusion. ChemTexts 6, 14 (2020). https://doi.org/10.1007/s40828-020-0108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-020-0108-1

Keywords

Navigation