Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Effect of Prescribed Heat Sources on Convective Unsteady MHD Flow of Williamson Nanofluid Through Porous Media: Darcy–Forchheimer Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

An unsteady two-dimensional mixed convection stagnation point flow induced past a surface stretching linearly embedded in a porous medium is examined numerically in this study, utilizing the Darcy–Forchheimer model. The medium is supposed to be jammed with an incompressible non-Newtonian Williamson nanofluid. The flow is examined for two different heat transfer mechanisms namely, PST and PHF, in the presence of a time-dependent magnetic field using the Buongiorno nanofluid model. The relevant governing PDEs such as continuity, momentum, energy, and concentration equations are first converted into non-linear ODEs, utilizing similarity transformations, and then solved using bvp4c solver in MATLAB. The results have been displayed in the form of figures and tables for both heat transfer mechanisms, PST and PHF. The purpose of this work is to examine the combined effects of unsteadiness, mixed convection, and magnetic field using the Darcy–Forchheimer model on the flow of non-Newtonian Williamson nanofluid near the stagnation-point region past a linearly stretching sheet for two different cases of heat transfer namely, PST and PHF. Our study concludes that escalating unsteadiness, thermal convection, and velocity ratio correspond to a rise in the local Nusselt number which corresponds to a better rate of heat transfer. Conductive heat transfer dominates for increasing permeability of the medium in both PST and PHF heat transfer mechanisms. These findings are useful for enhancing the rate of cooling of the sheet during extrusion of polymer sheets, emulsion coated sheets, plastic film drawing, glass fiber production, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availibility

Enquiries about data availability should be directed to the authors.

Abbreviations

BVP:

Boundary value problem

HAM:

Homotopy analysis method

MHD:

Magnetohydrodynamics

ODE:

Ordinary differential equation

PDE:

Partial differential equation

PHF:

Prescribed heat flux

PST:

Prescribed surface temperature

\(\beta \) :

Unsteady parameter

\(\epsilon \) :

Velocity ratio parameter

\(\eta \) :

Dimensionless variable

\(\lambda \) :

Local porosity parameter

\(\phi \) :

Dimensionless concentration function

\(\theta \) :

Dimensionless temperature function

\(C_b\) :

Drag coefficient

\(C_{fx}\) :

Skin friction coefficient

f :

Dimensionless stream function

Fr :

Forcheimmer number

G :

Thermal convection parameter

\(Gr_x\) :

Thermal buoyancy parameter

M :

Magnetic parameter

N :

Buoyancy ratio parameter

\(N_c\) :

Specific heat ratio

\(N_{bt}\) :

Diffusivity ratio

\(Nu_x\) :

Nusselt number

Pr :

Prandtl’s number

Re :

Reynold’s number

Sc :

Schmidt number

\(Sh_x\) :

Sherwood number

We :

Williamson parameter

\(\alpha \) :

Thermal diffusivity (\(\mathrm{m}^2\,\mathrm{s}^{-1}\))

\(\Gamma \) :

Time constant (\(\mathrm{s}^{-1}\))

\(\kappa \) :

Thermal conductivity (\(\mathrm{W}\,\mathrm{m}^{-1}\,\mathrm{K}^{-1}\))

\(\mu \) :

Dynamic viscosity (Pa s)

\(\nu \) :

Kinematic viscosity (\(\mathrm{m}^2\,\mathrm{s}^{-1}\))

\(\rho \) :

Density (\(\mathrm{kg}\,\mathrm{m}^{-3})\)

\(\rho _p\) :

Density at constant pressure

\(\sigma \) :

Electric conductivity of the fluid (\(\mathrm{S}\,\mathrm{m}^{-1}\))

\(\tau _w\) :

Shear stress at the wall (\(\mathrm{N}\,\mathrm{m}^{-2}\))

a, b :

Positive constant for stretching rate (\(\mathrm{s}^{-1}\))

B :

Applied magnetic field intensity (\(\mathrm{A}\,\mathrm{m}^{-1}\))

C :

Concentration (\(\mathrm{k}\,\mathrm{m}^{-3})\)

\(C_p\) :

Specific heat at constant pressure (\(\mathrm{J}\,\mathrm{kg}^{-1}\,\mathrm{K}\))

\(D_B\) :

Brownian diffusion coefficient (\(\mathrm{m}^2\,\mathrm{s}^{-1}\))

\(D_T\) :

Thermophoretic diffusion coefficient (\(\mathrm{m}^2\,\mathrm{s}^{-1}\))

\(k^*\) :

Permeability (\(\mathrm{H}\,\mathrm{m}^{-1}\))

\(q_m\) :

Mass flux (\(\mathrm{kg}\,\mathrm{s}^{-1}\))

\(q_w\) :

Heat flux (\(\mathrm{W}\,\mathrm{m}^{-2}\))

T :

Temperature (K)

u, v :

Horizontal and vertical velocity components (\(\mathrm{m}\,\mathrm{s}^{-1}\))

\(U_\infty \) :

Free stream velocity (\(\mathrm{m}\,\mathrm{s}^{-1}\))

\(U_w\) :

Stretching velocity (\(\mathrm{m}\,\mathrm{s}^{-1}\))

x, y :

Cartesian coordinates (m)

References

  1. Goyal, M., Bhargava, R.: Boundary layer flow and heat transfer of viscoelastic nanofluids past a stretching sheet with partial slip conditions. Appl. Nanosci. 4(6), 761–767 (2013)

    Article  Google Scholar 

  2. Rameshwaran, P., Townsend, P., Webster, M.F.: Simulation of particle settling in rotating and non-rotating flows of non-Newtonian fluids. Int. J. Numer. Methods Fluids. 26(7), 851–874 (1998)

    Article  MATH  Google Scholar 

  3. Nadeem, S., Hussain, S.T., Lee, C.: Flow of a Williamson fluid over a stretching sheet. Braz. J. Chem. Eng. 30(3), 619–625 (2013)

    Article  Google Scholar 

  4. Kumar, R., Kumar, R., Vajravelu, K., Sheikholeslami, M.: Three dimensional stagnation flow of Casson nanofluid through Darcy–Forchheimer space: a reduction to Blasius/Sakiadis flow. Chin. J. Phys. 68, 874–885 (2020)

    Article  MathSciNet  Google Scholar 

  5. Williamson, R.V.: The flow of pseudoplastic materials. Ind. Eng. Chem. 21(11), 1108–1111 (1929)

    Article  Google Scholar 

  6. Khan, N.A., Khan, H.: A Boundary layer flows of non-Newtonian Williamson fluid. Nonlinear Eng. 3(2), 107–115 (2014)

    Article  Google Scholar 

  7. Nadeem, S., Akram, S.: Peristaltic flow of a Williamson fluid in an asymmetric channel. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1705–1716 (2010)

  8. Akbar, N.S., Hayat, T., Nadeem, S., Obaidat, S.: Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer. Int. J. Heat Mass Transf. 55(7–8), 1855–1862 (2012)

    Article  Google Scholar 

  9. Ellahi, R., Riaz, A., Nadeem, S.: Three dimensional peristaltic flow of Williamson fluid in a rectangular duct. Ind. J. Phys. 87(12), 1275–1281 (2013)

    Article  Google Scholar 

  10. Khan, N.A., Khan, S., Riaz, F.: Boundary layer flow of Williamson fluid with chemically reactive species using scaling transformation and homotopy analysis method. Math. Sci. Lett. 3(3), 199 (2014)

    Article  Google Scholar 

  11. Zehra, I., Yousaf, M.M., Nadeem, S.: Numerical solutions of Williamson fluid with pressure dependent viscosity. Res. Phys. 5, 20–25 (2015)

    Google Scholar 

  12. Eldabe, N.T., Elogail, M.A., Elshaboury, S.M., Hasan, A.A.: Hall effects on the peristaltic transport of Williamson fluid through a porous medium with heat and mass transfer. Appl. Math. Mod. 40(1), 315–328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nadeem, S., Hussain, S.T.: Flow and heat transfer analysis of Williamson nanofluid. Appl. Nanosci. 4(8), 1005–1012 (2014)

    Article  Google Scholar 

  14. Kho, Y.B., Hussanan, A., Anuar Mohamed, M.K., Salleh, M.Z.: Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips: Buongiorno model. Propul. Power Res. 8(3), 243–252 (2019)

    Article  Google Scholar 

  15. Hashim, H., Mohamed, M.K.A., Ishak, N., Sarif, N.M., Salleh, M.Z.: Thermal radiation effect on MHD stagnation point flow of Williamson fluid over a stretching surface. J. Phys. 1366(1), 207–217 (2019)

    Google Scholar 

  16. Hamid, A., Khan, M., Hafeez, A.: Unsteady stagnation-point flow of Williamson fluid generated by stretching/shrinking sheet with Ohmic heating. Int. J. Heat Mass Transf. 126, 933–940 (2018)

    Article  Google Scholar 

  17. Qawasmeh, B.R., Duwairi, H.M., Alrbai, M.: Non-Darcian forced convection heat transfer of Williamson fluid in porous media. J. Por. Media 24(8) (2021)

  18. Sucharitha, G., Rashidi, M.M., Sreenadh, S., Lakshminarayana, P.: Effects of magnetic field and slip on convective peristaltic flow of a non-Newtonian fluid in an inclined nonuniform porous channel with flexible walls. J. Por. Media. 21(10) (2018)

  19. Ramamoorthy, M., Pallavarapu, L.: Radiation and Hall effects on a 3D flow of MHD Williamson fluid over a stretchable surface. Heat Transf. 49(8), 4410–4426 (2020)

    Article  Google Scholar 

  20. Meenakumari, R., Lakshminarayana, P., Vajravelu, K.: Unsteady MHD flow of a Williamson nanofluid on a permeable stretching surface with radiation and chemical reaction effects. Eur. Phys. J. Spec. Top. 230, 1355–1370 (2021)

    Article  Google Scholar 

  21. Srinivasacharya, D., Surender, O.: Effect of double stratification on mixed convection boundary layer flow of a nanofluid past a vertical plate in a porous medium. Appl. Nanosci. 5(1), 29–38 (2014)

    Article  Google Scholar 

  22. Majeed, A., Zeeshan, A., Noori, F.M.: Numerical study of Darcy–Forchheimer model with activation energy subject to chemically reactive species and momentum slip of order two. AIP Adv. 9(4), 045035 (2019)

    Article  Google Scholar 

  23. Kumar, R., Sood, S.: Effect of quadratic density variation on mixed convection stagnation point heat transfer and MHD fluid flow in porous medium towards a permeable shrinking sheet. J. Porous Media 19(12), 1083–1097 (2016)

    Article  Google Scholar 

  24. Dullien, F.A.: Porous Media: Fluid Transport and Pore Structure. Academic Press, London (2012)

  25. Nield, D.A., Bejan, A.: Convection in Porous Media, vol. 3. Springer, New York (2006)

  26. Muhammad, T., Alsaedi, A., Hayat, T., Shehzad, S.A.: A revised model for Darcy–Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition. Res. Phys. 7, 2791–2797 (2017)

    Google Scholar 

  27. Karniadakis, G., Beskok, A., Aluru, N.: Microflows and Nanoflows: Fundamentals and Simulation, vol. 3. Springer, Berlin (2006)

  28. Vafai, K., Thiyagaraja, R.: Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transf. 30(7), 1391–1405 (1987)

    Article  MATH  Google Scholar 

  29. Attia, H.A.: On the effectiveness of porosity on stagnation point flow with heat transfer over a permeable surface. J. Porous Media 10(6), 625–631 (2007)

    Article  Google Scholar 

  30. Mohammed, A.A., Dawood, A.S.: Mixed convection heat transfer in a ventilated enclosure with and without a saturated porous medium. J. Porous Media 19(4), 347–366 (2016)

    Article  Google Scholar 

  31. Darcy, H.: Les fontaines publiques de la ville de Dijon: exposition et application. Vict, Dalm (1856)

    Google Scholar 

  32. Forchheimer, P.: Wasserbewegung durch boden. Zeit. des Ver. deut. Ing. 45, 1782–1788 (1901)

    Google Scholar 

  33. Pal, D., Mondal, H.: Hydromagnetic convective diffusion of species in Darcy-Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int. Commun. Heat Mass Transf. 39(7), 913–917 (2012)

  34. Ganesh, N.V., Hakeem, A.A., Ganga, B.: Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects. Ain Shams Eng. J. 9(4), 939–951 (2018)

    Article  Google Scholar 

  35. Hiemenz, K.: Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Ding. Poly. J. 326, 321–324 (1911)

    Google Scholar 

  36. Homann, F.: Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel. J. Appl. Math. Mech. 16(3), 153–164 (1936)

    MATH  Google Scholar 

  37. Goldstein, S.: Modern Developments in Fluid Dynamics: An Account of Theory and Experiment Relating to Boundary Layers, Turbulent Motion and Wakes, vol. 2. Clarendon Press, London (1950)

  38. Gersten, K., Papenfuss, H.D., Gross, J.F.: Influence of the Prandtl number on second-order heat transfer due to surface curvature at a three-dimensional stagnation point. Int. J. Heat Mass Transf. 21(3), 275–284 (1978)

    Article  Google Scholar 

  39. Vajravelu, K., Mukhopadhyay, S.: Fluid Flow, Heat and Mass Transfer at Bodies of Different Shapes: Numeric Solution. Academic Press, London (2016)

  40. Paullet, J., Weidman, P.: Analysis of stagnation point flow toward a stretching sheet. Int. J. Non-Linear Mech. 42(9), 1084–1091 (2007)

    Article  MATH  Google Scholar 

  41. Lok, Y.Y., Amin, N., Pop, I.: Non-orthogonal stagnation point flow towards a stretching sheet. Int. J. Non-Linear Mech. 41(4), 622–627 (2006)

    Article  Google Scholar 

  42. Nazar, R., Amin, N., Filip, D., Pop, I.: Stagnation point flow of a micropolar fluid towards a stretching sheet. Int. J. Non-Linear Mech. 39(7), 1227–1235 (2004)

    Article  MATH  Google Scholar 

  43. Ishak, A.1, Jafar, K., Nazar, R., Pop, I.: MHD stagnation point flow towards a stretching sheet. Phys. A Stat. Mech. Its Appl. 388(17), 3377–3383 (2009)

  44. Wu, Q., Weinbaum, S., Andreopoulos, Y.: Stagnation-point flows in a porous medium. Chem. Eng. Sci. 60(1), 123–134 (2005)

    Article  Google Scholar 

  45. Kechil, S.A., Hashim, I.: Approximate analytical solution for MHD stagnation-point flow in porous media. Commun. Nonlinear Sci. Numer. Sim. 14(4), 1346–1354 (2009)

    Article  Google Scholar 

  46. Imtiaz, M., Hayat, T., Hussain, M., Shehzad, S.A., Chen, G.Q., Ahmad, B.: Mixed convection flow of nanofluid with Newtonian heating. Eur. Phys. J. Plus 129(5), 97 (2014)

    Article  Google Scholar 

  47. Sreenivasulu, B., Srinivas, B.: Mixed convection heat transfer from a spheroid to a Newtonian fluid. Int. J. Ther. Sci. 87, 1–18 (2015)

    Article  Google Scholar 

  48. Hayat, T., Shehzad, S.A., Alsaedi, A., Alhothuali, M.S.: Mixed convection stagnation point flow of Casson fluid with convective boundary conditions. Chin. Phys. Lett. 29(11), 114704 (2012)

    Article  Google Scholar 

  49. Hamid, A., Khan, M.: Unsteady mixed convective flow of Williamson nanofluid with heat transfer in the presence of variable thermal conductivity and magnetic field. J. Mol. Liq. 260, 436–446 (2018)

    Article  Google Scholar 

  50. Hamid, A., Khan, M.: Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-Williamson nanofluid. J. Mol. Liq. 262, 435–442 (2018)

    Article  Google Scholar 

  51. Rashidi, M.M., Bég, A.O., Freidooni, M.N., Hosseini, A., Gorla, R.S.R.: Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer flow over a vertical cylinder. Theo. Appl. Mech. 39(4), 365–390 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Turkyilmazoglu, M., Pop, I.: Soret and heat source effects on the unsteady radiative MHD free convection flow from an impulsively started infinite vertical plate. Int. J. Heat Mass Transf. 55(25–26), 7635–7644 (2012)

    Article  Google Scholar 

  53. Mukhopadhyay, S.: Mixed convection boundary layer flow along a stretching cylinder in porous medium. J. Pet. Sci. Eng. 96, 73–78 (2012)

    Article  Google Scholar 

  54. Hamid, M., Usman, M., Khan, Z.H., Haq, R.U., Wang, W.: Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation. Eur. Phys. J. Plus 133(12), 1–12 (2018)

    Article  Google Scholar 

  55. Kebede, T., Haile, E., Awgichew, G., Walelign, T.: Heat and mass transfer in unsteady boundary layer flow of Williamson nanofluids. J. Appl. Math. (2020). https://doi.org/10.1155/2020/1890972

  56. Majeed, A., Zeeshan, A., Ellahi, R.: Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux. J. Mol. Liq. 223, 528–533 (2016)

    Article  Google Scholar 

  57. Aamir, H., Khan, M.: Heat and mass transport phenomena of nanoparticles on time-dependent flow of Williamson fluid towards heated surface. Neural Comput. Appl. 32(8), 3253–3263 (2020)

    Article  Google Scholar 

  58. Kierzenka, J., Shampine, L.F.: A BVP solver based on residual control and the Maltab PSE. ACM Trans. Math. Soft. (TOMS) 27(3), 299–316 (2001)

    Article  MATH  Google Scholar 

  59. Shampine, L.F.: Singular boundary value problems for ODEs. Appl. Math. Comput. 138(1), 99–112 (2003)

    MathSciNet  MATH  Google Scholar 

  60. Shampine, L.F., Kierzenka, J., Reichelt, M.W.: Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tut. Notes (2000)

  61. Shampine, L.: Solving a hard BVP with bvp4c. Private Commun. (2004)

  62. Kierzenka, J., Shampine, L.F.: A BVP solver that controls residual and error. J. Numer. Anal. Indian Appl. Math. 3(1–2), 27–41 (2008)

  63. Hale, N., Moore, D.R.: A sixth-order extension to the MATLAB package bvp4c of J. Kierzenka and L. Shampine (2008)

  64. Mahapatra, T.R., Gupta, A.S.: Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf. 38(6), 517–521 (2002)

    Article  Google Scholar 

  65. Ishak, A., Nazar, R., Arifin, N.M., Pop, I.: Mixed convection of the stagnation-point flow towards a stretching vertical permeable sheet. Malays. J. Math. Sci. 2, 217–226 (2007)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archie Thakur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A., Sood, S. Effect of Prescribed Heat Sources on Convective Unsteady MHD Flow of Williamson Nanofluid Through Porous Media: Darcy–Forchheimer Model. Int. J. Appl. Comput. Math 8, 74 (2022). https://doi.org/10.1007/s40819-022-01271-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01271-y

Keywords

Navigation