Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A New Direct Coefficient-Based Heuristic Algorithm for Set Covering Problems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The set covering problem is a fundamental model which comprises a wide range of important applications such as crew scheduling problems that need to cover a set of trips. It is one of the most common issues in the facility location problem, which requires further investigations, particularly in emergency and service facilities. As such, the objective of this study is to propose a new coefficient-based heuristic algorithm for the set covering problems. This paper has accordingly presented the algorithm that evaluates the qualification of subsets by directly applying a fitness function. This fitness function is formulated based on sets and subsets coefficients in a way that the subsets of selected sets have the lowest probability to be selected in the next iteration. The algorithm is not only capable of constructing an answer within polynomial time, but can solve complex set covering problems without conventional restrictions. The performance of this algorithm is evaluated on benchmark instances including a set of reproduced and selected OR-library problems within different sizes. Computational results indicate that the proposed heuristic algorithm produces better solutions, especially in large-scale problems comparing simulated annealing in terms of quality and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang, K.J., Lestari, Y.D., Tran, V.N.B.: Location selection of high-tech manufacturing firms by a fuzzy analytic network process: a case study of Taiwan high-tech industry. Int. J. Fuzzy Syst. 19(5), 1560–1584 (2017)

    Google Scholar 

  2. Farahani, R.Z., Hekmatfar, M.: Facility Location: Concepts, Models, Algorithms and Case Studies. Springer, Berlin (2009)

    Google Scholar 

  3. Beasley, J.E., Jörnsten, K.: Enhancing an algorithm for set covering problems. Eur. J. Oper. Res. 58(2), 293–300 (1992)

    MATH  Google Scholar 

  4. Liu, Z., Xu, H., Liu, P., Li, L., Zhao, X.: Interval-valued intuitionistic uncertain linguistic multi-attribute decision-making method for plant location selection with partitioned hamy mean. Int. J. Fuzzy Syst. 22(6), 1993–2010 (2020)

    Google Scholar 

  5. Solar, M., Parada, V., Urrutia, R.: A parallel genetic algorithm to solve the set-covering problem. Comput. Oper. Res. 29(9), 1221–1235 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Bahrami, I., Ahari, R.M., Asadpour, M.: A maximal covering facility location model for emergency services within an M (t)/M/m/m queuing system. J. Model. Manag. 16(3), 963–986 (2021)

    Google Scholar 

  7. Li, R., Hu, S., Cai, S., Gao, J., Wang, Y., Yin, M.: NuMWVC: a novel local search for minimum weighted vertex cover problem. J. Oper. Res. Soc. 71(9), 1498–1509 (2020)

    Google Scholar 

  8. Jain, A.K., Khare, V.K., Mishra, P.M.: Facility planning and associated problems: a survey. Innov. Syst. Des. Eng. 4(6), 1–8 (2013)

    Google Scholar 

  9. Berman, O., Kalcsics, J., Krass, D.: On covering location problems on networks with edge demand. Comput. Oper. Res. 74, 214–227 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Xiang, X., Qiu, J., Xiao, J., Zhang, X.: Demand coverage diversity based ant colony optimization for dynamic vehicle routing problems. Eng. Appl. Artif. Intell. 91, 103582 (2020)

    Google Scholar 

  11. Klose, A., Drexl, A.: Facility location models for distribution system design. Eur. J. Oper. Res. 162(1), 4–29 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Lee, S.D., Chang, W.T.: On solving the discrete location problems when the facilities are prone to failure. Appl. Math. Model. 31(5), 817–831 (2007)

    MATH  Google Scholar 

  13. Caballero, R., González, M., Guerrero, F.M., Molina, J., Paralera, C.: Solving a multi-objective location routing problem with a metaheuristic based on tabu search. Application to a real case in Andalusia. Eur. J. Oper. Res. 177(3), 1751–1763 (2007)

    MATH  Google Scholar 

  14. Alumur, S., Kara, B.Y.: A new model for the hazardous waste location-routing problem. Comput. Oper. Res. 34(5), 1406–1423 (2007)

    MATH  Google Scholar 

  15. Berge, C.: Two theorems in graph theory. Proc. Natl. Acad. Sci. USA 43(9), 842–844 (1957)

    MathSciNet  MATH  Google Scholar 

  16. Gholami, H., Saman, M.Z.M., Sharif, S., Md Khudzari, J., Zakuan, N., Streimikiene, D., Streimikis, J.: A general framework for sustainability assessment of sheet metalworking processes. Sustainability. 12(12), 4957 (2020)

    Google Scholar 

  17. Toregas, C., Swain, R., ReVelle, C., Bergman, L.: The location of emergency service facilities. Oper. Res. 19(6), 1363–1373 (1971)

    MATH  Google Scholar 

  18. Crawford, B., Soto, R., Olivares, R., Embry, G., Flores, D., Palma, W., Castro, C., Paredes, F., Rubio, J.M.: A binary monkey search algorithm variation for solving the set covering problem. Nat. Comput. 19(4), 825–841 (2020)

    MathSciNet  Google Scholar 

  19. Hashemi, A., Hadavand, S., Esrafilian, R.: An extended mathematical model for multi-floor facility layout problems. Spec. J. Eng. Appl. Sci. 4(1), 69–74 (2019)

    Google Scholar 

  20. Lanza-Gutierrez, J.M., Caballe, N.C., Crawford, B., Soto, R., Gomez-Pulido, J.A., Paredes, F.: Exploring further advantages in an alternative formulation for the set covering problem. Math. Probl. Eng. (2020). https://doi.org/10.1155/2020/5473501

    Article  MATH  Google Scholar 

  21. Balas, E., Carrera, M.C.: A dynamic subgradient-based branch-and-bound procedure for set covering. Locat. Sci. 3(5), 203 (1997)

    Google Scholar 

  22. Beasley, J.E.: An algorithm for set covering problem. Eur. J. Oper. Res. 31(1), 85–93 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Fisher, M.L., Kedia, P.: Optimal solution of set covering/partitioning problems using dual heuristics. Manag. Sci. 36(6), 674–688 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Jamil, N., Gholami, H., Saman, M.Z.M., Streimikiene, D., Sharif, S., Zakuan, N.: DMAIC-based approach to sustainable value stream mapping: towards a sustainable manufacturing system. Econ. Res.-Ekonomska Istraživanja. 33(1), 331–360 (2020)

    Google Scholar 

  25. Reyes, V., Araya, I.: A GRASP-based scheme for the set covering problem. Oper. Res. (2019). https://doi.org/10.1007/s12351-019-00514-z

    Article  Google Scholar 

  26. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    MathSciNet  MATH  Google Scholar 

  27. Salehipour, A.: A heuristic algorithm for the set k-cover problem. In: International Conference on Optimization and Learning, pp. 98–112. Springer, Cham (2020)

  28. Nogueira, B., Tavares, E., Maciel, P.: Iterated local search with tabu search for the weighted vertex coloring problem. Comput. Oper. Res. 125, 105087 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Hashemi, A., Esrafilian, R., Hadavand, S., Zeraatkar, M.: Application of fuzzy TOPSIS for evaluation of green supply chain management practices (case study: Zanjan Sepehr Khodro; Iran). Int. J. Eng. Technol. 11(6), 13–24 (2020)

    Google Scholar 

  30. Chiscop, I., Nauta, J., Veerman, B., Phillipson, F.: A hybrid solution method for the multi-service location set covering problem. In: International Conference on Computational Science, pp. 531–545. Springer, Cham (2020)

  31. Wang, Y., Pan, S., Al-Shihabi, S., Zhou, J., Yang, N., Yin, M.: An improved configuration checking-based algorithm for the unicost set covering problem. Eur. J. Oper. Res. 294(2), 476–491 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Sadeghi, J., Niaki, S.T.A., Malekian, M.R., Wang, Y.: A lagrangian relaxation for a fuzzy random epq problem with shortages and redundancy allocation: two tuned meta-heuristics. Int. J. Fuzzy Syst. 20(2), 515–533 (2018)

    MathSciNet  Google Scholar 

  33. Mandal, S., Patra, N., Pal, M.: Covering problem on fuzzy graphs and its application in disaster management system. Soft. Comput. 25(4), 2545–2557 (2021)

    Google Scholar 

  34. Alizadeh, R., Nishi, T.: Hybrid set covering and dynamic modular covering location problem: application to an emergency humanitarian logistics problem. Appl. Sci. 10(20), 7110 (2020)

    Google Scholar 

  35. Lorena, L.A., de Souza Lopes, L.: Genetic algorithms applied to computationally difficult set covering problems. J. Oper. Res. Soc. 48(4), 440–445 (1997)

    MATH  Google Scholar 

  36. Aickelin, U.: An indirect genetic algorithm for set covering problems. J. Oper. Res. Soc. 53(10), 1118–1126 (2002)

    MATH  Google Scholar 

  37. Idrees, A.K., Al-Yaseen, W.L.: Distributed genetic algorithm for lifetime coverage optimisation in wireless sensor networks. Int. J. Adv. Intell. Paradig. 18(1), 3–24 (2021)

    Google Scholar 

  38. Aourid, M., Kaminska, B.: Neural networks for the set covering problem: an application to the test vector compaction. In: Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), vol. 7, pp. 4645–4649. IEEE (1994)

  39. Yang, Y., Rajgopal, J.: Learning Combined Set Covering and Traveling Salesman Problem. http://arxiv.org/abs/arXiv:2007.03203 (2020).

  40. Vasko, F.J., Wolf, F.E.: A heuristic concentration approach for weighted set covering problems. Locator: ePubl. Locat. Anal. 2(1), 1–14 (2001)

    Google Scholar 

  41. Erkut, E., Alp, O.: Designing a road network for hazardous materials shipments. Comput. Oper. Res. 34(5), 1389–1405 (2007)

    MATH  Google Scholar 

  42. Hwang, H.S.: A stochastic set-covering location model for both ameliorating and deteriorating items. Comput. Ind. Eng. 46(2), 313–319 (2004)

    Google Scholar 

  43. Rajagopalan, H.K., Saydam, C., Xiao, J.: A multiperiod set covering location model for dynamic redeployment of ambulances. Comput. Oper. Res. 35(3), 814–826 (2008)

    MATH  Google Scholar 

  44. Amoaning-Yankson, S.: A conceptual framework for developing sociotechnical transportation system resilience. PhD diss., Georgia Institute of Technology (2017)

  45. Mandal, S., Patra, N., Pal, M.: Covering problem on fuzzy graphs and its application in disaster management system. Soft Comput. 25(4), 2545–2557 (2020)

    Google Scholar 

  46. Wang, J., Qin, Z.: Chance constrained programming models for uncertain hub covering location problems. Soft. Comput. 24(4), 2781–2791 (2020)

    MathSciNet  Google Scholar 

  47. Murray, A.T., Wei, R.: A computational approach for eliminating error in the solution of the location set covering problem. Eur. J. Oper. Res. 224, 52–64 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Hosseininezhad, S.J., Jabalameli, M.S., Pesaran Haji Abbas, M.: A cross entropy algorithm for continuous covering location problem. J. Ind. Syst. Eng. 11(3), 247–260 (2018)

    Google Scholar 

  49. Bagherinejad, J., Seifbarghy, M., Shoeib, M.: Developing dynamic maximal covering location problem considering capacitated facilities and solving it using hill climbing and genetic algorithm. Eng. Rev.: Međunarodni časopis namijenjen publiciranju originalnih istraživanja s aspekta analize konstrukcija, materijala i novih tehnologija u području strojarstva, brodogradnje, temeljnih tehničkih znanosti, elektrotehnike, računarstva i građevinarstva. 37(2), 178–193 (2017)

    Google Scholar 

  50. Furini, F., Ljubić, I., Sinnl, M.: An effective dynamic programming algorithm for the minimum-cost maximal knapsack packing problem. Eur. J. Oper. Res. 262(2), 438–448 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Al-Shihabi, S.: A hybrid of max–min ant system and linear programming for the k-covering problem. Comput. Oper. Res. 76, 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Dastmardi, M., Mohammadi, M., Naderi, B.: Maximal covering salesman problems with average travelling cost constrains. Int. J. Math. Oper. Res. 17(2), 153–169 (2020)

    MathSciNet  MATH  Google Scholar 

  53. Bagheri, H., Babaei Morad, S.B.M., Behnamian, J.: Fuzzy multi-period mathematical programming model for maximal covering location problem. J. Ind. Syst. Eng. 11(1), 223–243 (2018)

    Google Scholar 

  54. Shi, H., Yin, B., Zhang, X., Kang, Y., Lei, Y.: A landmark selection method for L-Isomap based on greedy algorithm and its application. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 7371–7376. IEEE (2015)

  55. Khorsi, M., Chaharsooghi, S.K., Bozorgi-Amiri, A., Kashan, A.H.: A multi-objective multi-period model for humanitarian relief logistics with split delivery and multiple uses of vehicles. J. Syst. Sci. Syst. Eng. 29, 360–378 (2020)

    Google Scholar 

  56. Mahrach, M., Miranda, G., León, C., Segredo, E.: Comparison between single and multi-objective evolutionary algorithms to solve the knapsack problem and the travelling salesman problem. Mathematics (2018). https://doi.org/10.3390/math8112018

    Article  Google Scholar 

  57. Bogue, E.T., Ferreira, H.S., Noronha, T.F., Prins, C.: A column generation and a post optimization VNS heuristic for the vehicle routing problem with multiple time windows. Optim. Lett. (2020). https://doi.org/10.1007/s11590-019-01530-w

    Article  MATH  Google Scholar 

  58. Alamatsaz, K., Jolfaei, A., Iranpoor, M.: Edge covering with continuous location along the network. Int. J. Ind. Eng. Comput. 11(4), 627–642 (2020)

    Google Scholar 

  59. Kaur, C., Misra, N.: On the parameterized complexity of spanning trees with small vertex covers. In: Conference on Algorithms and Discrete Applied Mathematics, pp. 427–438. Springer, Cham (2020)

  60. Klostermeyer, W.F., Messinger, M.E., Yeo, A.: Dominating vertex covers: the vertex-edge domination problem. Discussiones Mathematicae: Graph Theory 41(1), 123–132 (2021)

    MathSciNet  MATH  Google Scholar 

  61. Fiorini, S., Joret, G., Schaudt, O.: Improved approximation algorithms for hitting 3-vertex paths. Math. Program 182(1), 355–367 (2020)

    MathSciNet  MATH  Google Scholar 

  62. Redi, A.A.N.P., Maula, F.R., Kumari, F., Syaveyenda, N.U., Ruswandi, N., Khasanah, A.U., Kurniawan, A.C.: Simulated annealing algorithm for solving the capacitated vehicle routing problem: a case study of pharmaceutical distribution. Jurnal Sistem dan Manajemen Industri. 4(1), 41–49 (2020)

    Google Scholar 

  63. Kaur, M., Saini, S.: A review of metaheuristic techniques for solving university course timetabling problem. In: Goar V., Kuri M., Kumar R., Senjyu T. (eds) Advances in Information Communication Technology and Computing. Lecture Notes in Networks and Systems, vol. 135. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5421-6_3

  64. Mori, T.: The New Experimental Design: Taguchi’s Approach to Quality Engineering. ASI Press, Dearborn (1990)

    Google Scholar 

  65. Park, S.H.: Robust Design and Analysis for Quality Engineering, 1st edn. Chapman & Hall, London (1996)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Management Centre at Universiti Teknologi Malaysia and the Ministry of Higher Education (Malaysia) for supporting and funding the Postdoctoral Fellowship scheme (PDRU Grant), Vot No. Q.J130000.21A2.05E33.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamed Gholami or Adam Wojciechowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, A., Gholami, H., Venkatadri, U. et al. A New Direct Coefficient-Based Heuristic Algorithm for Set Covering Problems. Int. J. Fuzzy Syst. 24, 1131–1147 (2022). https://doi.org/10.1007/s40815-021-01208-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01208-5

Keywords

Navigation