Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

General Degree-Eccentricity Index of Trees

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

For a connected graph G and \(a,b \in \mathbb {R}\), the general degree-eccentricity index is defined as \(\mathrm{DEI}_{a,b}(G) = \sum _{v \in V(G)} d_{G}^{a}(v) \mathrm{ecc}_{G}^{b}(v)\), where V(G) is the vertex set of G, \(d_{G} (v)\) is the degree of a vertex v and \(\mathrm{ecc}_{G}(v)\) is the eccentricity of v in G. We obtain sharp upper and lower bounds on the general degree-eccentricity index for trees of given order in combination with given matching number, independence number, domination number or bipartition. The bounds hold for \(0< a < 1\) and \(b > 0\), or for \(a > 1\) and \(b < 0\). Many bounds hold also for \(a = 1\). All the extremal graphs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material/Code Availability

Not applicable.

References

  1. Akhter, S., Farooq, R.: Eccentric adjacency index of graphs with a given number of cut edges. Bull. Malays. Math. Sci. Soc. 43(3), 2509–2522 (2020)

    Article  MathSciNet  Google Scholar 

  2. Das, K.C., Lee, D.-W., Graovac, A.: Some properties of the Zagreb eccentricity indices. ARS Math. Contemp. 6(1), 117–125 (2013)

    Article  MathSciNet  Google Scholar 

  3. De, N., Abu Nayeem, S.M., Pal, A.: Total eccentricity index of the generalized hierarchical product of graphs. Int. J. Appl. Comput. Math. 1(3), 503–511 (2015)

    Article  MathSciNet  Google Scholar 

  4. Došlić, T., Saheli, M.: Eccentric connectivity index of composite graphs. Util. Math. 95, 3–22 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Dureja, H., Gupta, S., Madan, A.K.: Predicting anti-HIV-1 activity of 6-arylbenzonitriles: computational approach using superaugmented eccentric connectivity topochemical indices. J. Mol. Graph. Model. 26, 1020–1029 (2008)

    Article  Google Scholar 

  6. Geng, X., Li, S., Zhang, M.: Extremal values on the eccentric distance sum of trees. Discrete Appl. Math. 161(16–17), 2427–2439 (2013)

    Article  MathSciNet  Google Scholar 

  7. Hou, Y., Li, J.: Bounds on the largest eigenvalues of trees with a given size of matching. Linear Algebra Appl. 342, 203–217 (2002)

    Article  MathSciNet  Google Scholar 

  8. Hua, H., Miao, Z.: The total eccentricity sum of non-adjacent vertex pairs in graphs. Bull. Malays. Math. Sci. Soc. 42(3), 947–963 (2019)

    Article  MathSciNet  Google Scholar 

  9. Ilić, A.: Eccentric connectivity index. arXiv:1103.2515 [math.CO]

  10. Ilić, A., Gutman, I.: Eccentric connectivity index of chemical trees. MATCH Commun. Math. Comput. Chem. 65(3), 731–744 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Javaid, M., Ibraheem, M., Bhatti, A.A.: Connective eccentricity index of certain path-thorn graphs. J. Prime Res. Math. 14(1), 87–99 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Kumar, V., Sardana, S., Madan, A.K.: Predicting anti-HIV activity of 2, 3-diaryl-1, 3-thiazolidin-4-ones: computational approach using reformed eccentric connectivity index. J. Mol. Model. 10, 399–407 (2004)

    Article  Google Scholar 

  13. Liu, J.-B., Shaker, H., Nadeem, I., Farahani, M.R.: Eccentric connectivity index of \(t\)-polyacenic nanotubes. Adv. Mat. Sci. Eng. 2019, 9062535 (2019)

    Google Scholar 

  14. Malik, M.A., Farooq, R.: On the eccentric-connectivity index of some \(3\)-fence graphs and their line graphs. Int. J. Appl. Comput. Math. 3(2), 1157–1169 (2017)

    Article  MathSciNet  Google Scholar 

  15. Miao, L., Cao, Q., Cui, N., Pang, S.: On the extremal values of the eccentric distance sum of trees. Discrete Appl. Math. 186(1), 199–206 (2015)

    Article  MathSciNet  Google Scholar 

  16. Morgan, M.J., Mukwembi, S., Swart, H.C.: On the eccentric connectivity index of a graph. Discrete Math. 311(13), 1229–1234 (2011)

    Article  MathSciNet  Google Scholar 

  17. Mukungunugwa, V., Mukwembi, S.: On eccentric connectivity index and connectivity. Acta Math. Sin. (Engl. Ser.) 35(7), 1205–1216 (2019)

    Article  MathSciNet  Google Scholar 

  18. Ore, O.: Theory of graphs. Am. Math. Soc. Colloq. Publ. 38, 49–53 (1962)

    MATH  Google Scholar 

  19. Qi, X., Du, Z.: On Zagreb eccentricity indices of trees. MATCH Commun. Math. Comput. Chem. 78(1), 241–256 (2017)

    MathSciNet  Google Scholar 

  20. Venkatakrishnan, Y.B., Balachandran, S., Kannan, K.: On the eccentric connectivity index of generalized thorn graphs. Nat. Acad. Sci. Lett. 38(2), 165–168 (2015)

    Article  MathSciNet  Google Scholar 

  21. Vetrík, T., Masre, M.: Generalized eccentric connectivity index of trees and unicyclic graphs. Discrete Appl. Math. 284, 301–315 (2020)

    Article  MathSciNet  Google Scholar 

  22. Wang, H.: Extremal trees of the eccentric connectivity index. ARS Combin. 122, 55–64 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Xing, R., Zhou, B., Trinajstić, N.: On Zagreb eccentricity indices. Croat. Chem. Acta 84(4), 493–497 (2011)

    Article  Google Scholar 

  24. Zhou, B., Du, Z.: On eccentric connectivity index. MATCH Commun. Math. Comput. Chem. 63(1), 181–198 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of T. Vetrík is based on the research supported by the National Research Foundation of South Africa (Grant No. 129252).

Author information

Authors and Affiliations

Authors

Contributions

Mesfin Masre is a PhD student who was working under the supervision of Tomáš Vetrík.

Corresponding author

Correspondence to Tomáš Vetrík.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sanming Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masre, M., Vetrík, T. General Degree-Eccentricity Index of Trees. Bull. Malays. Math. Sci. Soc. 44, 2753–2772 (2021). https://doi.org/10.1007/s40840-021-01086-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-021-01086-y

Keywords

Mathematics Subject Classification

Navigation