Abstract
For a connected graph G and \(a,b \in \mathbb {R}\), the general degree-eccentricity index is defined as \(\mathrm{DEI}_{a,b}(G) = \sum _{v \in V(G)} d_{G}^{a}(v) \mathrm{ecc}_{G}^{b}(v)\), where V(G) is the vertex set of G, \(d_{G} (v)\) is the degree of a vertex v and \(\mathrm{ecc}_{G}(v)\) is the eccentricity of v in G. We obtain sharp upper and lower bounds on the general degree-eccentricity index for trees of given order in combination with given matching number, independence number, domination number or bipartition. The bounds hold for \(0< a < 1\) and \(b > 0\), or for \(a > 1\) and \(b < 0\). Many bounds hold also for \(a = 1\). All the extremal graphs are presented.
Similar content being viewed by others
Availability of Data and Material/Code Availability
Not applicable.
References
Akhter, S., Farooq, R.: Eccentric adjacency index of graphs with a given number of cut edges. Bull. Malays. Math. Sci. Soc. 43(3), 2509–2522 (2020)
Das, K.C., Lee, D.-W., Graovac, A.: Some properties of the Zagreb eccentricity indices. ARS Math. Contemp. 6(1), 117–125 (2013)
De, N., Abu Nayeem, S.M., Pal, A.: Total eccentricity index of the generalized hierarchical product of graphs. Int. J. Appl. Comput. Math. 1(3), 503–511 (2015)
Došlić, T., Saheli, M.: Eccentric connectivity index of composite graphs. Util. Math. 95, 3–22 (2014)
Dureja, H., Gupta, S., Madan, A.K.: Predicting anti-HIV-1 activity of 6-arylbenzonitriles: computational approach using superaugmented eccentric connectivity topochemical indices. J. Mol. Graph. Model. 26, 1020–1029 (2008)
Geng, X., Li, S., Zhang, M.: Extremal values on the eccentric distance sum of trees. Discrete Appl. Math. 161(16–17), 2427–2439 (2013)
Hou, Y., Li, J.: Bounds on the largest eigenvalues of trees with a given size of matching. Linear Algebra Appl. 342, 203–217 (2002)
Hua, H., Miao, Z.: The total eccentricity sum of non-adjacent vertex pairs in graphs. Bull. Malays. Math. Sci. Soc. 42(3), 947–963 (2019)
Ilić, A.: Eccentric connectivity index. arXiv:1103.2515 [math.CO]
Ilić, A., Gutman, I.: Eccentric connectivity index of chemical trees. MATCH Commun. Math. Comput. Chem. 65(3), 731–744 (2011)
Javaid, M., Ibraheem, M., Bhatti, A.A.: Connective eccentricity index of certain path-thorn graphs. J. Prime Res. Math. 14(1), 87–99 (2018)
Kumar, V., Sardana, S., Madan, A.K.: Predicting anti-HIV activity of 2, 3-diaryl-1, 3-thiazolidin-4-ones: computational approach using reformed eccentric connectivity index. J. Mol. Model. 10, 399–407 (2004)
Liu, J.-B., Shaker, H., Nadeem, I., Farahani, M.R.: Eccentric connectivity index of \(t\)-polyacenic nanotubes. Adv. Mat. Sci. Eng. 2019, 9062535 (2019)
Malik, M.A., Farooq, R.: On the eccentric-connectivity index of some \(3\)-fence graphs and their line graphs. Int. J. Appl. Comput. Math. 3(2), 1157–1169 (2017)
Miao, L., Cao, Q., Cui, N., Pang, S.: On the extremal values of the eccentric distance sum of trees. Discrete Appl. Math. 186(1), 199–206 (2015)
Morgan, M.J., Mukwembi, S., Swart, H.C.: On the eccentric connectivity index of a graph. Discrete Math. 311(13), 1229–1234 (2011)
Mukungunugwa, V., Mukwembi, S.: On eccentric connectivity index and connectivity. Acta Math. Sin. (Engl. Ser.) 35(7), 1205–1216 (2019)
Ore, O.: Theory of graphs. Am. Math. Soc. Colloq. Publ. 38, 49–53 (1962)
Qi, X., Du, Z.: On Zagreb eccentricity indices of trees. MATCH Commun. Math. Comput. Chem. 78(1), 241–256 (2017)
Venkatakrishnan, Y.B., Balachandran, S., Kannan, K.: On the eccentric connectivity index of generalized thorn graphs. Nat. Acad. Sci. Lett. 38(2), 165–168 (2015)
Vetrík, T., Masre, M.: Generalized eccentric connectivity index of trees and unicyclic graphs. Discrete Appl. Math. 284, 301–315 (2020)
Wang, H.: Extremal trees of the eccentric connectivity index. ARS Combin. 122, 55–64 (2015)
Xing, R., Zhou, B., Trinajstić, N.: On Zagreb eccentricity indices. Croat. Chem. Acta 84(4), 493–497 (2011)
Zhou, B., Du, Z.: On eccentric connectivity index. MATCH Commun. Math. Comput. Chem. 63(1), 181–198 (2010)
Funding
The work of T. Vetrík is based on the research supported by the National Research Foundation of South Africa (Grant No. 129252).
Author information
Authors and Affiliations
Contributions
Mesfin Masre is a PhD student who was working under the supervision of Tomáš Vetrík.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by Sanming Zhou.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Masre, M., Vetrík, T. General Degree-Eccentricity Index of Trees. Bull. Malays. Math. Sci. Soc. 44, 2753–2772 (2021). https://doi.org/10.1007/s40840-021-01086-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40840-021-01086-y
Keywords
- General degree-eccentricity index
- Tree
- Matching number
- Independence number
- Domination number
- Eccentric connectivity index