Abstract
We describe and study an explicit structure of a regular cell complex \(\mathcal {K}(L)\) on the moduli space M(L) of a planar polygonal linkage L. The combinatorics is very much related (but not equal) to the combinatorics of the permutohedron. In particular, the cells of maximal dimension are labeled by elements of the symmetric group. For example, if the moduli space M is a sphere, the complex \(\mathcal {K}\) is dual to the boundary complex of the permutohedron.The dual complex \(\mathcal {K}^*\) is patched of Cartesian products of permutohedra. It can be explicitly realized in the Euclidean space via a surgery on the permutohedron.
Similar content being viewed by others
References
Galashin, P., Panina, G.: Manifolds associated to simple games. J. Knot Theory Ramif. 25(12), (2016). doi:10.1142/S0218216516420037
Farber, M.: Invitation to topological robotics. Zuerich lectures in advanced mathematics. European Mathematical Society (EMS), Zuerich (2008)
Farber, M., Schütz, D.: Homology of planar polygon spaces. Geom. Dedicata 125, 75–92 (2007)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Gelfand, I., Goresky, M., MacPherson, R., Serganova, V.: Combinatorial geometries, grassmannians, and the moment map. Adv. Math 63, 301–316 (1987)
Gorodetskaya, I.: Moduli spaces of planar pentagonal linkages: combinatorial description. arXiv:1305.6756
Kapovich, M., Millson, J.: On the moduli space of polygons in the Euclidean plane. J. Diff. Geom. 42, 430–464 (1995)
Klyachko, A.: Spatial polygons and stable configurations of points in the projective line. In: Tikhomirov A., et al. (eds.) Algebraic Geometry and Its Applications, Proceedings of the 8th Algebraic Geometry Conference, Yaroslavl’, Russia, August 10–14, 1992. Braunschweig: Vieweg. Aspects Math. E 25, 67–84 (1994)
Pukhlikov, A., Khovanskii, A.: Finitely additive measures of virtual polyhedra. St. Petersburg Math. J. 4(2), 337–356 (1993)
Panina, G.: Cyclopermutohedron. Trudy Mian 288, 149–162 (2015)
Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)
Zvonkine, D.: Configuration spaces of hinge constructions. Russ. J. Math. Phys. 5(2), 247–266 (1997)
Acknowledgements
I am grateful to Nikolai Mnev for inspiring conversations. I am also indebted to Misha Kapovich for delivering me the proof of Lemma 1.2.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Panina, G. Moduli Space of a Planar Polygonal Linkage: A Combinatorial Description. Arnold Math J. 3, 351–364 (2017). https://doi.org/10.1007/s40598-017-0070-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40598-017-0070-1