Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Moduli Space of a Planar Polygonal Linkage: A Combinatorial Description

  • Research Contribution
  • Published:
Arnold Mathematical Journal Aims and scope Submit manuscript

Abstract

We describe and study an explicit structure of a regular cell complex \(\mathcal {K}(L)\) on the moduli space M(L) of a planar polygonal linkage L. The combinatorics is very much related (but not equal) to the combinatorics of the permutohedron. In particular, the cells of maximal dimension are labeled by elements of the symmetric group. For example, if the moduli space M is a sphere, the complex \(\mathcal {K}\) is dual to the boundary complex of the permutohedron.The dual complex \(\mathcal {K}^*\) is patched of Cartesian products of permutohedra. It can be explicitly realized in the Euclidean space via a surgery on the permutohedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Galashin, P., Panina, G.: Manifolds associated to simple games. J. Knot Theory Ramif. 25(12), (2016). doi:10.1142/S0218216516420037

  • Farber, M.: Invitation to topological robotics. Zuerich lectures in advanced mathematics. European Mathematical Society (EMS), Zuerich (2008)

  • Farber, M., Schütz, D.: Homology of planar polygon spaces. Geom. Dedicata 125, 75–92 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Gelfand, I., Goresky, M., MacPherson, R., Serganova, V.: Combinatorial geometries, grassmannians, and the moment map. Adv. Math 63, 301–316 (1987)

    Article  MATH  Google Scholar 

  • Gorodetskaya, I.: Moduli spaces of planar pentagonal linkages: combinatorial description. arXiv:1305.6756

  • Kapovich, M., Millson, J.: On the moduli space of polygons in the Euclidean plane. J. Diff. Geom. 42, 430–464 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Klyachko, A.: Spatial polygons and stable configurations of points in the projective line. In: Tikhomirov A., et al. (eds.) Algebraic Geometry and Its Applications, Proceedings of the 8th Algebraic Geometry Conference, Yaroslavl’, Russia, August 10–14, 1992. Braunschweig: Vieweg. Aspects Math. E 25, 67–84 (1994)

  • Pukhlikov, A., Khovanskii, A.: Finitely additive measures of virtual polyhedra. St. Petersburg Math. J. 4(2), 337–356 (1993)

    MathSciNet  Google Scholar 

  • Panina, G.: Cyclopermutohedron. Trudy Mian 288, 149–162 (2015)

    MathSciNet  MATH  Google Scholar 

  • Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Book  Google Scholar 

  • Zvonkine, D.: Configuration spaces of hinge constructions. Russ. J. Math. Phys. 5(2), 247–266 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Nikolai Mnev for inspiring conversations. I am also indebted to Misha Kapovich for delivering me the proof of Lemma 1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaiane Panina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panina, G. Moduli Space of a Planar Polygonal Linkage: A Combinatorial Description. Arnold Math J. 3, 351–364 (2017). https://doi.org/10.1007/s40598-017-0070-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40598-017-0070-1

Keywords

Navigation