Abstract
The iodine isotope I-131 has been used in nuclear medicine for several decades to treat both benign and malignant thyroid diseases. The therapy is effective and safe and insensitive to variations in the activity dosage of I-131. Individualization of therapy in order to limit the administered activity to the lowest amount necessary to successfully treat diseased thyrocytes while minimizing exposure to healthy organs requires performing dosimetry through measurement of the individual iodine kinetics. This review discusses the concepts of dosimetry used for patients with thyroid disorders and compiles information on the present evidence for superiority of individualization of therapy by dosimetric assessments. Two main concepts of individualized treatment are used for patients with differentiated thyroid carcinoma: (a) the assessment of the specific absorbed dose to the blood as a substitute for the red marrow dose in order to target at a specific blood dose from therapy and (b) the administration of the I-131 activity determined by lesion dosimetry to be necessary to achieve a fixed absorbed dose to the tumour which is known to be effective in most of the cases. The first concept is mainly used to safely administer the highest tolerable activity, thus enhancing the absorbed dose to the tumour. Increasing evidence exists that patients with advanced disease benefit from this dose optimization. The second concept becomes increasingly feasible with the improvements in dosimetry introduced by advanced imaging techniques like I-124 PET/CT, but bears the inherent risk of under-dosing the patient. Studies reporting response in tumours are not consistent regarding the absorbed dose necessary to certainly eliminate the lesion. In the treatment of benign thyroid diseases, most studies comparing regimes with calculated and estimated activity dosage did not find improved rates of cure and side effects in patients with measured kinetics. A few studies with advanced dosimetric concepts found good dose–response relations. Individualization of radioiodine therapy in the treatment of thyroid disorders still is not used to its full potential. Recently developed imaging techniques like SPECT/CT and PET/CT, enabling 3-dimensional measurement of dose distributions, allow considerable improvements in dosimetry. Prospective randomized trials with appropriate and controlled dosimetry are necessary to provide conclusive information on the value of individualized treatment planning and to identify the major confounding variables responsible for treatment failure.
Similar content being viewed by others
References
Luster M et al (2008) Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 35(10):1941–1959
Cooper DS et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1167–1214
Stokkel MP et al (2010) EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 37(11):2218–2228
Bahn RS et al (2011) Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid 21(6):593–646
Lassmann M et al (2004) Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med 45(4):619–625
Medvedec M (2005) Thyroid stunning in vivo and in vitro. Nucl Med Commun 26(8):731–735
McDougall IR, Iagaru A (2011) Thyroid stunning: fact or fiction? Semin Nucl Med 41(2):105–112
Sawka AM et al (2009) Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid 19(5):451–457
Iyer NG et al (2011) Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer 117(19):4439–4446
Van Nostrand D (2011) Sialoadenitis secondary to 131I therapy for well-differentiated thyroid cancer. Oral Dis 17(2):154–161
Lee JJ et al (2008) Maximal safe dose of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma. Ann Nucl Med 22(9):727–734
Van Nostrand D et al (2002) Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid 12(2):121–134
Lassmann M et al (2008) EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 35(7):1405–1412
Jentzen W, Freudenberg L, Bockisch A (2011) Quantitative imaging of (124) I with PET/CT in pretherapy lesion dosimetry. Effects impairing image quantification and their corrections. Q J Nucl Med Mol Imaging 55(1):21–43
Dewaraja YK et al (2013) MIRD pamphlet no. 24: guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med 54(12):2182–2188
Hänscheid H et al (2013) EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging 40(7):1126–1134
Tuttle RM et al (2010) Thyroid carcinoma. J Natl Compr Canc Netw 8(11):1228–1274
Hackshaw A et al (2007) Review: (131) I activity for remnant ablation in patients with differentiated thyroid cancer: a systematic review. J Clin Endocrinol Metab 92(1):28–38
Doi SA et al (2007) Ablation of the thyroid remnant and I-131 dose in differentiated thyroid cancer: a meta-analysis revisited. Clin Med Res 5(2):87–90
Verburg FA et al (2014) Long-term survival in differentiated thyroid cancer is worse after low-activity initial post-surgical I-131 therapy in both high- and low-risk patients. J Clin Endocrinol Metab 99(12):4487–4496
Mallick U et al (2012) Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. New Engl J Med 366(18):1674–1685
Schlumberger M et al (2012) Strategies of Radioiodine Ablation in Patients with Low-Risk Thyroid Cancer. New Engl J Med 366(18):1663–1673
Hänscheid H et al (2006) Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med 47(4):648–654
Luster M et al (2012) Radioiodine therapy of metastatic lesions of differentiated thyroid cancer. J Endocrinol Investig 35(6):21–29
Benua RS et al (1962) The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 87:171–182
Maxon HR et al (1983) Relation between effective radiation-dose and outcome of radioiodine therapy for thyroid-cancer. N Engl J Med 309(16):937–941
Benua RS, Leeper R (1986) A method and rationale for treating metastatic thyroid carcinoma with the largest safe dose of I-131. In: Medeiros-Neto G, Gaitan G (eds) Frontiers in thyroidology. Plenum Medical Book Co, New York, pp 1317–1321
Riggs DS (1952) Quantitative aspects of iodine metabolism in man. Pharmacol Rev 4(3):284–370
Kolbert KS et al (2007) Prediction of absorbed dose to normal organs in thyroid cancer patients treated with I-131 by use of I-124 PET and 3-dimensional internal dosimetry software. J Nucl Med 48(1):143–149
Sgouros G (1993) Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 34(4):689–694
Hindorf C et al (2010) EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging 37(6):1238–1250
Eckerman KF, Stabin MG (2000) Electron absorbed fractions and dose conversion factors for marrow and bone by skeletal regions. Health Phys 78(2):199–214
ICRP89 Publication 89 (2002) Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP 32(3–4):1–278
Dorn R et al (2003) Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med 44(3):451–456
Kulkarni K et al (2006) The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid 16(10):1019–1023
Tuttle RM et al (2006) Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med 47(10):1587–1591
Bianchi L et al (2012) Dosimetry in the therapy of metastatic differentiated thyroid cancer administering high 131I activity: the experience of Busto Arsizio Hospital (Italy). Q J Nucl Med Mol Imaging 56(6):515–521
Reiners C et al (2013) Twenty-five years after chernobyl: outcome of radioiodine treatment in children and adolescents with very high-risk radiation-induced differentiated thyroid carcinoma. J Clin Endocrinol Metab 98(7):3039–3048
Sgouros G et al (2006) Lung toxicity in radioiodine therapy of thyroid carcinoma: development of a dose-rate method and dosimetric implications of the 80 mCi rule. J Nucl Med 47(12):1977–1984
Song H et al (2006) Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases. J Nucl Med 47(12):1985–1994
Hobbs RF et al (2009) I-124 PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med 50(11):1844–1847
Verburg FA, Reiners C, Hanscheid H (2013) Approach to the patient: role of dosimetric RAI Rx in children with DTC. J Clin Endocrinol Metab 98(10):3912–3919
Klubo-Gwiezdzinska J et al (2011) Efficacy of dosimetric versus empiric prescribed activity of I-131 for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab 96(10):3217–3225
Verburg FA, Hänscheid H, Biko J, Hategan MC, Lassmann M, Kreissl MC, Reiners C, Luster M (2010) Dosimetry-guided high-activity 131I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging 37:896–903
Hartung-Knemeyer V et al (2012) Pre-therapeutic blood dosimetry in patients with differentiated thyroid carcinoma using 124-iodine: predicted blood doses correlate with changes in blood cell counts after radioiodine therapy and depend on modes of TSH stimulation and number of preceding radioiodine therapies. Ann Nucl Med 26(9):723–729
Eschmann SM et al (2002) Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 29(6):760–767
Flux GD et al (2010) A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 37(2):270–275
Chiesa C et al (2009) Individualized dosimetry in the management of metastatic differentiated thyroid cancer. Q J Nucl Med Mol Imaging 53(5):546–561
Jentzen W et al (2014) Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using I-124 PET imaging. J Nucl Med 55(11):1759–1765
Freudenberg LS et al (2007) I-124-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nukl Nucl Med 46(4):121–128
Foster B et al (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96
Jentzen W (2015) An improved iterative thresholding method to delineate PET volumes using the delineation-averaged signal instead of the enclosed maximum signal. J Nucl Med Technol 43(1):28–35
Sgouros G et al (2004) Patient-specific dosimetry for I-131 thyroid cancer therapy using I-124 PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 45(8):1366–1372
Jentzen W et al (2008) Optimized I-124 PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med 49(6):1017–1023
Vaiano A et al (2007) Comparison between remnant and red-marrow absorbed dose in thyroid cancer patients submitted to I-131 ablative therapy after rh-TSH stimulation versus hypothyroidism induced by L-thyroxine withdrawal. Nucl Med Commun 28(3):215–223
Verburg FA et al (2011) The absorbed dose to the blood is a better predictor of ablation success than the administered I-131 activity in thyroid cancer patients. Eur J Nucl Med Mol Imaging 38(4):673–680
Hänscheid H et al (2011) Success of the postoperative I-131 therapy in young Belarusian patients with differentiated thyroid cancer after Chernobyl depends on the radiation absorbed dose to the blood and the thyroglobulin level. Eur J Nucl Med Mol Imaging 38(7):1296–1302
Sisson JC, Shulkin BL, Lawson S (2003) Increasing efficacy and safety of treatments of patients with well-differentiated thyroid carcinoma by measuring body retentions of I-131. J Nucl Med 44(6):898–903
Hänscheid H et al (2009) Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma. Endocr Relat Cancer 16(4):1283–1289
Rawson RW, Rall JE, Peacock W (1951) Limitations and indications in the treatment of cancer of the thyroid with radioactive iodine. J Clin Endocrinol 11(10):1128–1142
Samuel AM, Rajashekharrao B, Shah DH (1998) Pulmonary metastases in children and adolescents with well-differentiated thyroid cancer. J Nucl Med 39(9):1531–1536
Verburg FA et al (2010) No survival difference after successful I-131 ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 37(2):276–283
Thies ED et al (2014) The number of I-131 therapy courses needed to achieve complete remission is an indicator of prognosis in patients with differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 41(12):2281–2290
EUCouncil (1997) Council directive 97/43/Euratom of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive 84/466/Euratom. Official Journal of the European Communities No L 180/22. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31997L0043&rid=4. Accessed 14 Oct 2015
Brunn J et al (1981) Volumetrie der Schilddrüsenlappen mittels Real-time-Sonographie. Dtsch Med Wochenschr 41:1338–1340
Andermann P et al (2007) Intra- and interobserver variability of thyroid volume measurements in healthy adults by 2D versus 3D ultrasound. Nuklearmedizin 46(1):1–7
Park CS et al (2010) Observer variability in the sonographic evaluation of thyroid nodules. J Clin Ultrasound 38(6):287–293
van Isselt JW et al (2003) Comparison of methods for thyroid volume estimation in patients with Graves’ disease. Eur J Nucl Med Mol Imaging 30(4):525–531
Bockisch A et al (1993) Optimized dose planning of radioiodine therapy of benign thyroidal diseases. J Nucl Med 34(10):1632–1638
Merrill S et al (2011) Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves’ disease. Phys Med Biol 56(3):557–571
Hänscheid H, Lassmann M, Reiners C (2011) Dosimetry prior to I-131-therapy of benign thyroid disease. Z Med Phys 21(4):250–257
Hammes J et al (2011) GATE based Monte Carlo simulation of planar scintigraphy to estimate the nodular dose in radioiodine therapy for autonomous thyroid adenoma. Z Med Phys 21(4):290–300
Peters H et al (1995) Radioiodine therapy of Graves hyperthyroidism—standard vs calculated (131) iodine activity—results from a prospective, randomized, multicenter study. Eur J Clin Investig 25(3):186–193
Reinhardt MJ et al (2002) Radioiodine therapy in Graves’ disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome. Eur J Nucl Med Mol Imaging 29(9):1118–1124
Strigari L et al (2008) A NTCP approach for estimating the outcome in radioiodine treatment of hyperthyroidism. Med Phys 35(9):3903–3910
Krohn T et al (2014) Maximum dose rate is a determinant of hypothyroidism after I-131 therapy of Graves’ disease but the total thyroid absorbed dose is not. J Clin Endocrinol Metab 99(11):4109–4115
Orsini F et al (2012) Personalization of radioiodine treatment for Graves’ disease: a prospective, randomized study with a novel method for calculating the optimal I-131-iodide activity based on target reduction of thyroid mass. Q J Nucl Med Mol Imaging 56(6):496–502
Traino AC et al (2000) Influence of thyroid volume reduction on calculated dose in radioiodine therapy of Graves’ hyperthyroidism. Phys Med Biol 45(1):121–129
Di Martino F et al (2002) A theoretical model for prescription of the patient-specific therapeutic activity for radioiodine therapy of Graves’ disease. Phys Med Biol 47(9):1493–1499
de Jong JA et al (2013) High failure rates after (131) I therapy in Graves hyperthyroidism patients with large thyroid volumes, high iodine uptake, and high iodine turnover. Clin Nucl Med 38(6):401–406
De Rooij A et al (2009) Clinical outcomes after estimated versus calculated activity of radioiodine for the treatment of hyperthyroidism: systematic review and meta-analysis. Eur J Endocrinol 161(5):771–777
Rokni H et al (2014) Efficacy of different protocols of radioiodine therapy for treatment of toxic nodular goiter: systematic review and meta-analysis of the literature. Int J Endocrinol Metab 12(2):e14424
Sun JH et al (1995) Comparison of the outcome between the calculated dosimetry and the estimated dosimetry of 131I in the treatment of hyperthyroidism. Chang Yi Xue Za Zhi 18(4):322–328
Jarlov AE et al (1995) Is calculation of the dose in radioiodine therapy of hyperthyroidism worth while. Clin Endocrinol 43(3):325–329
Khanna CM et al (1996) Evaluation of long-term results of two schedules of treatment for toxic multinodular goitre with radioiodine therapy (I 131). J Assoc Physicians India 44(2):102–105
Peters H et al (1997) Treatment of Graves’ hyperthyroidism with radioiodine: results of a prospective randomized study. Thyroid 7(2):247–251
Calegaro JU et al (2000) One-year follow-up of Graves’ disease treatment by four different protocols of radioiodine administration. Panminerva Med 42(4):241–245
Kok SW et al (2000) Clinical outcome after standardized versus dosimetric radioiodine treatment of hyperthyroidism: an equivalence study. Nucl Med Commun 21(11):1071–1078
Leslie WD et al (2003) A randomized comparison of radioiodine doses in Graves’ hyperthyroidism. J Clin Endocrinol Metab 88(3):978–983
Ustun F et al (2005) The incidence of recurrence and hypothyroidism after radioiodine treatment in patients with hyperthyroidism in Trakya, a mild iodine deficiency area, during the period 1991–2003. Ann Nucl Med 19(8):737–742
Huysmans DA et al (1993) Long-term results of two schedules of radioiodine treatment for toxic multinodular goitre. Eur J Nucl Med 20(11):1056–1062
Zakavi SR, Mousavi Z, Davachi B (2009) Comparison of four different protocols of I-131 therapy for treating single toxic thyroid nodule. Nucl Med Commun 30(2):169–175
Giovanella L et al (2014) Unstimulated highly sensitive thyroglobulin in follow-up of differentiated thyroid cancer patients: a meta-analysis. J Clin Endocrinol Metab 99(2):440–447
Goldsmith SJ (2011) To ablate or not to ablate: issues and evidence involved in I-131 ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma. Semin Nucl Med 41(2):96–104
Erdi YE et al (1999) Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging 2(1):41–46
Brans B et al (2007) Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging 34(5):772–786
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Frederik A. Verburg is a consultant to Bayer and Genzyme. Heribert Hänscheid and Michael Lassmann have nothing to declare.
This article does not contain any studies with human or animal subjects performed by any of the authors.
Rights and permissions
About this article
Cite this article
Hänscheid, H., Lassmann, M. & Verburg, F.A. Dose optimization in nuclear medicine therapy of benign and malignant thyroid diseases. Clin Transl Imaging 4, 31–40 (2016). https://doi.org/10.1007/s40336-015-0148-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40336-015-0148-5