Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A continuous interior penalty finite element method for a third-order singularly perturbed boundary value problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We propose a continuous interior penalty finite element method designed for a third-order singularly perturbed problem. Using higher order polynomials on Shishkin-type layer-adapted meshes, a robust convergence has been proved in the corresponding energy norm. Moreover, we show numerical experiments which support our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brenner SC, Sung L-J (2005) \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J Sci Comput 22(23):83–118

    Article  MathSciNet  MATH  Google Scholar 

  • Ern A, Guermond J-L (2004) Theory and practice of finite elements. Springer, New York

    Book  MATH  Google Scholar 

  • Franz S, Roos H-G, Wachtel A (2014) A \(C^0\) interior penalty method for a singularly-perturbed fourth-order elliptic problem on a layer-adapted mesh. Numer Methods Partial Differ Equ 30(3):838–861

    Article  MathSciNet  MATH  Google Scholar 

  • Gartland EC (1988) Graded-mesh difference schemes for singularly perturbed two-point boundary value problems. Math Comput 51:631–657

    Article  MathSciNet  MATH  Google Scholar 

  • Howes FA (1983) The asymptotic solution of a class of third-order boundary value problems arising in the theory of thin film flows. SIAM J Appl Math 43(5):993–1004

    Article  MathSciNet  MATH  Google Scholar 

  • Howes FA (1984) Asymptotic structures in nonlinear dissipative and dispersive systems. Phys D Nonlinear Phenom 12(1–3):382–390

    Article  MathSciNet  MATH  Google Scholar 

  • Linss T (2001) The necessity of Shishkin decompositions. Appl Math Lett 14:891–896

    Article  MathSciNet  MATH  Google Scholar 

  • Linss T (2010) Layer-adapted meshes for reaction-convection-diffusion problems. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • O’Malley RE (1974) Introduction to singular perturbations. Academic Press, New York

    MATH  Google Scholar 

  • Roos H-G (2012) Robust numerical methods for singularly perturbed differential equations: a survey covering 2008–2012. ISRN Appl Math 2012:Article ID 379547. doi:10.5402/2012/379547

  • Roos H-G, Stynes M, Tobiska L (2008) Robust numerical methods for singularly perturbed differential equations. Springer, Berlin

    MATH  Google Scholar 

  • Roos H-G, Teofanov Lj, Uzelac Z (2015a) Graded meshes for higher order FEM. J Comput Math 33(1):1–16

  • Roos H-G, Teofanov Lj, Uzelac Z (2015b) Uniformly convergent difference schemes for a third order singularly perturbed boundary value problem. Appl Numer Math 96:108–117

  • Roos H-G, Linss T (1999) Sufficient conditions for uniform convergence on layer-adapted grids. Computing 63:27–45

    Article  MathSciNet  MATH  Google Scholar 

  • Steinbach O (2008) Numerical approximation methods for elliptic boundary value problems. Springer, New York

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Zarin.

Additional information

Communicated by Jose Alberto Cuminato.

The work of H. Zarin and the Lj. Teofanov was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under Grant 174030.

Appendices

Appendices

1.1 Appendix 1: Proof of existence of weak solutions

First we verify the inf-sup condition

$$\begin{aligned} \mathcal{S}:=\sup _{0\ne w\in Y}\frac{B_{G}(v,w)}{|w|_{H^1(\Omega )}}\ge C\Vert v\Vert _X. \end{aligned}$$
(48)

To do that we estimate \(|v|_{H^1(\Omega )}\) and \(\varepsilon |v|_{H^2(\Omega )}\) separately. We get easily

$$\begin{aligned} |v|_{H^1(\Omega )}^2\le C B_{G}(v,v)=C \frac{B_{G}(v,v)}{|v|_{H^1(\Omega )}}|v|_{H^1(\Omega )}, \end{aligned}$$

and therefore

$$\begin{aligned} |v|_{H^1(\Omega )}\le C\,\mathcal{S}. \end{aligned}$$

For estimating \(\varepsilon |v|_{H^2(\Omega )}\) we use the possibility to estimate the \(L^2\)-norm by the sum of the \(H^{-1}\)-norm and the \(H^{-1}\)-norm of the derivative, see Steinbach (2008, Theorem 2.17). It follows

$$\begin{aligned} |v|_{H^2(\Omega )}\le C(|v''|_{H^{-1}(\Omega )}+|v'''|_{H^{-1}(\Omega )}). \end{aligned}$$

Now

$$\begin{aligned} |v''|_{H^{-1}(\Omega )}=\sup _{0\ne w\in Y} \frac{\langle v'',w\rangle }{|w|_{H^1(\Omega )}} \le |v|_{H^1(\Omega )}\le C\mathcal{S}. \end{aligned}$$

Moreover,

$$\begin{aligned} \varepsilon |v'''|_{H^{-1}(\Omega )}=\varepsilon \sup _{0\ne w\in Y} \frac{\langle v''',w\rangle }{|w|_{H^1(\Omega )}} =\varepsilon \sup _{0\ne w\in Y} \frac{(-v'',w')}{|w|_{H^1(\Omega )}}. \end{aligned}$$

Taking into account

$$\begin{aligned} \varepsilon (v'',w')=-B_{G}(v,w)+(av',w')+(bv'+cv,w), \end{aligned}$$

we get

$$\begin{aligned} \varepsilon |v'''|_{H^{-1}(\Omega )}\le \sup _{0\ne w\in Y}\frac{B_{G}(v,w)}{|w|_{H^1(\Omega )}} +\sup _{0\ne w\in Y}\frac{|A(v,w)|}{|w|_{H^1(\Omega )}}\le C\,\mathcal{S}. \end{aligned}$$

Consequently, we have proved (48).

Finally we consider the equation

$$\begin{aligned} -\varepsilon (v'',w')+A(v,w)=0. \end{aligned}$$

Taking \(v\in C_0^\infty (\Omega )\), from

$$\begin{aligned} \varepsilon \langle w'',v'\rangle =-A(v,w) \end{aligned}$$

we conclude that w belongs to the space \(H^2(\Omega )\). Moreover, it satisfies the homogenous adjoint problem

$$\begin{aligned} \varepsilon (w'',v')+A(w,v)=0 \end{aligned}$$
(49)

with the additional boundary condition \(w'(0)=0\). Setting \(w=v\) in (49), we get

$$\begin{aligned} \frac{\varepsilon }{2}(w')^2(1)+\min \{\alpha , \gamma \}\Vert w\Vert ^2_{H^1(\Omega )}\le 0, \end{aligned}$$

thus \(w=0\).

Now, the unique solvability of the Galerkin formulation (5)–(6) follows and moreover, stability with respect to the norm in X.

1.2 Appendix 2: Proof of Lemma 2

On an interval \(I_i\subset \Omega _f\), \(i=N/2+1,\ldots ,N\), starting from the standard interpolation estimate (23) and (4), we first have

$$\begin{aligned} |E-E^I|^2_{H^q(I_i)}&\le Ch_i^{2(k+1-q)}\Vert E^{(k+1)}\Vert ^2_{L^2(I_i)} \le C\varepsilon ^{-2k}h_i^{2(k+1-q)}\int _{I_i}\mathrm{e}^{-2(1-x)/\varepsilon }\,\mathrm{d}x \nonumber \\&= C\varepsilon ^{-2k+1}h_i^{2(k+1-q)}\left( \mathrm{e}^{-2(1-x_i)/\varepsilon }-\mathrm{e}^{-2(1-x_{i-1})/\varepsilon }\right) . \end{aligned}$$
(50)

From (21) and the properties of the mesh-generating and mesh-characterizing functions, we get

$$\begin{aligned} \sinh (h_i/\varepsilon )&\le Ch_i/\varepsilon =C(\phi (t_{i-1})-\phi (t_i))=C\int _{t_i}^{t_{i-1}}\phi '(t)\,\mathrm{d}t =C\int _{t_{i-1}}^{t_i}\frac{\psi '(t)}{\psi (t)}\,\mathrm{d}t \\&\le C\psi (t_{i-1})^{-1}\int _{t_{i-1}}^{t_i}\psi '(t)\,\mathrm{d}t = C\mathrm{e}^{(1-x_{i-1})/(\tau \varepsilon )}\int _{t_{i-1}}^{t_i}\psi '(t)\,\mathrm{d}t, \end{aligned}$$

in order to derive

$$\begin{aligned} \mathrm{e}^{-2(1-x_i)/\varepsilon }-\mathrm{e}^{-2(1-x_{i-1})/\varepsilon }&= \mathrm{e}^{-2(1-x_{i-1})/\varepsilon } (\mathrm{e}^{2h_i/\varepsilon }-1) \\&= 2\mathrm{e}^{-2(1-x_{i-1})/\varepsilon } \mathrm{e}^{h_i/\varepsilon }\sinh (h_i/\varepsilon ) \\&\le C\mathrm{e}^{-2(1-x_{i-1})/\varepsilon }\mathrm{e}^{(1-x_{i-1})/(\tau \varepsilon )}\int _{t_{i-1}}^{t_i}\psi '(t)\,\mathrm{d}t. \end{aligned}$$

Applying the last inequality into (50) gives us

$$\begin{aligned} |E-E^I|^2_{H^q(I_i)}&\le C\varepsilon ^{-2k+1}h_i^{2(k+1-q)} \mathrm{e}^{-2(1-x_{i-1})/\varepsilon }\mathrm{e}^{(1-x_{i-1})/(\tau \varepsilon )}\int _{t_{i-1}}^{t_i}\psi '(t)\,\mathrm{d}t \\&\le C\varepsilon ^{-2q+3}(N^{-1}\max |\psi '|)^{2(k+1-q)} \mathrm{e}^{\left( \frac{2(k+1-q)}{\tau \varepsilon }-\frac{2}{\varepsilon }+\frac{1}{\tau \varepsilon }\right) (1-x_{i-1})} \int _{t_{i-1}}^{t_i}\psi '(t)\,\mathrm{d}t \\&\le C\varepsilon ^{-2q+3}(N^{-1}\max |\psi '|)^{2(k+1-q)}\int _{t_{i-1}}^{t_i}\psi '(t)\,\mathrm{d}t. \end{aligned}$$

Here we have used (21) as well as

$$\begin{aligned} \frac{2(k+1-q)}{\tau \varepsilon }-\frac{2}{\varepsilon }+\frac{1}{\tau \varepsilon } =\frac{2k+3-2\tau -2q}{\tau \varepsilon }\le 0 \qquad \text{ for }\quad \tau \ge k+3/2. \end{aligned}$$

Now taking sum over all intervals from the fine part of the mesh we get

$$\begin{aligned} |E-E^I|^2_{H^q(\Omega _f)}&= \sum _{i=N/2+1}^N|E-E^I|^2_{H^q(I_i)} \nonumber \\&\le C\varepsilon ^{-2q+3}(N^{-1}\max |\psi '|)^{2(k+1-q)}\int _{1/2}^{1}\psi '(t)\,\mathrm{d}t \nonumber \\&\le C\varepsilon ^{-2q+3}(N^{-1}\max |\psi '|)^{2(k+1-q)} \end{aligned}$$

due to

$$\begin{aligned} \int _{1/2}^{1}\psi '(t)\,\mathrm{d}t=\psi (1)-\psi (1/2)=1-N^{-1}. \end{aligned}$$

Thus, we have proved (28).

Using similar arguments we derive

$$\begin{aligned} \Vert (E-E^I)^{(q)}\Vert _{L^\infty (\Omega _f)}&\le C\max _{i=N/2+1,\ldots ,N}h_i^{k+1-q}\Vert E^{(k+1)}\Vert _{L^\infty (I_i)} \nonumber \\&\le C\varepsilon ^{-q+1}(N^{-1}\max |\psi '|)^{k+1-q}\max _{i=N/2+1,\ldots ,N} \mathrm{e}^{\frac{(k+1-q)(1-x_{i-1})}{\tau \varepsilon }}\mathrm{e}^{-\frac{1-x_i}{\varepsilon }} \nonumber \\&\le C\varepsilon ^{-q+1}(N^{-1}\max |\psi '|)^{k+1-q}, \end{aligned}$$

since

$$\begin{aligned}&{\exp \left( \frac{(k+1-q)(1-x_{i-1})}{\tau \varepsilon }-\frac{1-x_i}{\varepsilon }\right) } \\&\qquad = \exp \left( \left( \frac{k+1-q}{\tau \varepsilon }-\frac{1}{\varepsilon }\right) (1-x_{i-1})+\frac{h_i}{\varepsilon }\right) \\&\qquad \le C\exp \left( \frac{k+1-\tau -q}{\tau \varepsilon }(1-x_{i-1})\right) \le C. \end{aligned}$$

Hence, the inequality (29) is also proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarin, H., Roos, HG. & Teofanov, L. A continuous interior penalty finite element method for a third-order singularly perturbed boundary value problem. Comp. Appl. Math. 37, 175–190 (2018). https://doi.org/10.1007/s40314-016-0339-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0339-3

Keywords

Mathematics Subject Classification

Navigation