Abstract
Introduction
Drugs that potentially prolong the QT interval carry the risk of life-threatening Torsades de pointes (TdP) ventricular arrhythmia.
Objective
The objective of this study was to investigate the potential additive risk for ventricular arrhythmia with concomitant prescriptions of QT-prolonging drugs.
Methods
Claims data for persons aged ≥65 years between 2010 and 2012 in Germany were analyzed and all cases hospitalized for ventricular arrhythmia were selected. In a case-crossover analysis, exposure with QT-prolonging drugs according to the Arizona Center for Education and Research on Therapeutics (AZCERT) classification of ‘known,’ ‘conditional,’ and ‘possible’ TdP risk was determined in respective event and control windows preceding hospitalization. Conditional logistic regression was applied to derive odds ratios (ORs).
Results
Among 6,849,622 health-insured persons, we identified 2572 patients newly hospitalized for ventricular arrhythmia. Drugs with ‘known’ risk were more frequently prescribed in the event window than in the control window (309 vs. 239; P < 0.001). The number of drugs with an attributed ‘known’ risk of TdP was significantly associated with hospitalization for ventricular arrhythmia (OR: 2.22; 95% confidence interval [1.51–3.25]; P < 0.001), while increased risk estimates were also obtained upon categorization into one and two or more drugs compared with no drugs for the combined group of drug with ‘known’ (1.52 [1.16–2.00]) and ‘conditional’ risk (2.20 [1.42–3.41]). Pairwise comparisons and trend tests based on these classification categories could not demonstrate a significantly increased risk of two or more drugs compared with one drug.
Conclusion
Beyond suitable single-drug classifications for QT-associated risk estimation, the situation when there is co-prescription of several drugs appears to be complex and may not be extrapolated to all possible multi-drug combinations.
Similar content being viewed by others
References
Marengoni A, Pasina L, Concoreggi C, Martini G, Brognoli F, Nobili A, et al. Understanding adverse drug reactions in older adults through drug-drug interactions. Eur J Intern Med. 2014;25(9):843–6. doi:10.1016/j.ejim.2014.10.001.
Beard K. Adverse reactions as a cause of hospital admission in the aged. Drugs Aging. 1992;2(4):356–67.
Moore N, Lecointre D, Noblet C, Mabille M. Frequency and cost of serious adverse drug reactions in a department of general medicine. Br J Clin Pharmacol. 1998;45(3):301–8.
Mjorndal T, Boman MD, Hagg S, Backstrom M, Wiholm BE, Wahlin A, et al. Adverse drug reactions as a cause for admissions to a department of internal medicine. Pharmacoepidemiol Drug Saf. 2002;11(1):65–72. doi:10.1002/pds.667.
Atkin PA, Veitch PC, Veitch EM, Ogle SJ. The epidemiology of serious adverse drug reactions among the elderly. Drugs Aging. 1999;14(2):141–52.
Bates DW, Baysari MT, Dugas M, Haefeli WE, Kushniruk AW, Lehmann CU, et al. Discussion of “Attitude of physicians towards automatic alerting in computerized physician order entry systems”. Methods Inf Med. 2013;52(2):109–27.
Onder G, van der Cammen TJ, Petrovic M, Somers A, Rajkumar C. Strategies to reduce the risk of iatrogenic illness in complex older adults. Age Ageing. 2013;42(3):284–91. doi:10.1093/ageing/aft038.
Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329(7456):15–9. doi:10.1136/bmj.329.7456.15.
Brennan TA, Leape LL, Laird NM, Hebert L, Localio AR, Lawthers AG, et al. Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study I. N Engl J Med. 1991;324(6):370–6. doi:10.1056/NEJM199102073240604.
Schachtele S, Tumena T, Gassmann KG, Fromm MF, Maas R. Co-prescription of QT-interval prolonging drugs: an analysis in a large cohort of geriatric patients. PLoS One. 2016;11(5):e0155649. doi:10.1371/journal.pone.0155649.
Sumic JC, Baric V, Bilic P, Herceg M, Sisek-Sprem M, Jukic V. QTc and psychopharmacs: are there any differences between monotherapy and polytherapy. Ann Gen Psychiatry. 2007;6:13. doi:10.1186/1744-859X-6-13.
Sala M, Vicentini A, Brambilla P, Montomoli C, Jogia JR, Caverzasi E, et al. QT interval prolongation related to psychoactive drug treatment: a comparison of monotherapy versus polytherapy. Ann Gen Psychiatry. 2005;4(1):1. doi:10.1186/1744-859X-4-1.
Fayssoil A, Issi J, Guerbaa M, Raynaud JC, Heroguelle V. Torsade de pointes induced by citalopram and amiodarone. Ann Cardiol Angeiol (Paris). 2011;60(3):165–8. doi:10.1016/j.ancard.2010.12.002.
Niemeijer MN, van den Berg ME, Franco OH, Hofman A, Kors JA, Stricker BH, et al. Drugs and ventricular repolarization in a general population: the Rotterdam study. Pharmacoepidemiol Drug Saf. 2015;24(10):1036–41. doi:10.1002/pds.3853.
Haddad PM, Anderson IM. Antipsychotic-related QTc prolongation, torsade de pointes and sudden death. Drugs. 2002;62(11):1649–71.
Thomas SH, Behr ER. Pharmacological treatment of acquired QT prolongation and torsades de pointes. Br J Clin Pharmacol. 2016;81(3):420–7. doi:10.1111/bcp.12726.
France NP, Della Pasqua O. The role of concentration-effect relationships in the assessment of QTc interval prolongation. Br J Clin Pharmacol. 2015;79(1):117–31. doi:10.1111/bcp.12443.
Frommeyer G, Eckardt L. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms. Nat Rev Cardiol. 2016;13(1):36–47. doi:10.1038/nrcardio.2015.110.
De Ponti F, Poluzzi E, Montanaro N. Organising evidence on QT prolongation and occurrence of Torsades de Pointes with non-antiarrhythmic drugs: a call for consensus. Eur J Clin Pharmacol. 2001;57(3):185–209.
Petropoulou E, Jamshidi Y, Behr ER. The genetics of pro-arrhythmic adverse drug reactions. Br J Clin Pharmacol. 2014;77(4):618–25. doi:10.1111/bcp.12208.
Vlachos K, Georgopoulos S, Efremidis M, Sideris A, Letsas KP. An update on risk factors for drug-induced arrhythmias. Expert Rev Clin Pharmacol. 2016;9(1):117–27. doi:10.1586/17512433.2016.1100073.
Margulis M, Sorota S. Additive effects of combined application of multiple hERG blockers. J Cardiovasc Pharmacol. 2008;51(6):549–52. doi:10.1097/FJC.0b013e31817532ee.
Friemel A, Zunkler BJ. Interactions at human ether-a-go-go-related gene channels. Toxicol Sci. 2010;114(2):346–55. doi:10.1093/toxsci/kfq011.
Ritter JM. Cardiac safety, drug-induced QT prolongation and torsade de pointes (TdP). Br J Clin Pharmacol. 2012;73(3):331–4. doi:10.1111/j.1365-2125.2012.04193.x.
Desta Z, Kerbusch T, Flockhart DA. Effect of clarithromycin on the pharmacokinetics and pharmacodynamics of pimozide in healthy poor and extensive metabolizers of cytochrome P450 2D6 (CYP2D6). Clin Pharmacol Ther. 1999;65(1):10–20. doi:10.1016/S0009-9236(99)70117-7.
Honig PK, Wortham DC, Zamani K, Conner DP, Mullin JC, Cantilena LR. Terfenadine-ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. JAMA. 1993;269(12):1513–8.
Boyce MJ, Baisley KJ, Warrington SJ. Pharmacokinetic interaction between domperidone and ketoconazole leads to QT prolongation in healthy volunteers: a randomized, placebo-controlled, double-blind, crossover study. Br J Clin Pharmacol. 2012;73(3):411–21. doi:10.1111/j.1365-2125.2011.04093.x.
Tamariz L, Harkins T, Nair V. A systematic review of validated methods for identifying ventricular arrhythmias using administrative and claims data. Pharmacoepidemiol Drug Saf. 2012;21(Suppl 1):148–53. doi:10.1002/pds.2340.
Hennessy S, Leonard CE, Freeman CP, Deo R, Newcomb C, Kimmel SE, et al. Validation of diagnostic codes for outpatient-originating sudden cardiac death and ventricular arrhythmia in Medicaid and Medicare claims data. Pharmacoepidemiol Drug Saf. 2010;19(6):555–62. doi:10.1002/pds.1869.
Chen HL, Hsiao FY. Domperidone, cytochrome P450 3A4 isoenzyme inhibitors and ventricular arrhythmia: a nationwide case-crossover study. Pharmacoepidemiol Drug Saf. 2015;24(8):841–8. doi:10.1002/pds.3814.
Tamblyn R, Lavoie G, Petrella L, Monette J. The use of prescription claims databases in pharmacoepidemiological research: the accuracy and comprehensiveness of the prescription claims database in Quebec. J Clin Epidemiol. 1995;48(8):999–1009.
German Institute of Medical Documentation and Information. ICD-10. International statistical classification of diseases and related health problems, German modification. Cologne: Deutscher Ärzte-Verlag; 2011.
Quinzler R, Schmitt SP, Szecsenyi J, Haefeli WE. Optimizing information on drug exposure by collection of package code information in questionnaire surveys. Pharmacoepidemiol Drug Saf. 2007;16(9):1024–30. doi:10.1002/pds.1406.
Arizona Science Foundation. CredibleMeds®. https://crediblemeds.org/index.php?rf=US. Accessed 5 Jan 2016.
Schwabe U, Paffrath D. Arzneiverordnungs-Report 2013. Heidelberg: Springer-Verlag, Berlin; 2013.
Meid AD, Heider D, Adler JB, Quinzler R, Brenner H, Gunster C, et al. Comparative evaluation of methods approximating drug prescription durations in claims data: modeling, simulation, and application to real data. Pharmacoepidemiol Drug Saf. Epub. 2016;. doi:10.1002/pds.4091.
Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005;58(4):323–37. doi:10.1016/j.jclinepi.2004.10.012.
Huiart L, Ferdynus C, Dell’Aniello S, Bakiri N, Giorgi R, Suissa S. Measuring persistence to hormonal therapy in patients with breast cancer: accounting for temporary treatment discontinuation. Pharmacoepidemiol Drug Saf. 2014;23(8):882–9. doi:10.1002/pds.3631.
Nielsen LH, Lokkegaard E, Andreasen AH, Keiding N. Using prescription registries to define continuous drug use: how to fill gaps between prescriptions. Pharmacoepidemiol Drug Saf. 2008;17(4):384–8. doi:10.1002/pds.1549.
FDA. Guidance for Industry. Drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. 2012. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm292362.pdf. Accessed 30 Jun 2015.
Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol. 1991;133(2):144–53.
Therneau TM. A package for survival analysis in S. Version 2.38; 2015. https://cran.r-project.org/web/packages/survival/index.html. Accessed 5 Jan 2016.
Maclure M. Taxonomic axes of epidemiologic study designs: a refutationist perspective. J Clin Epidemiol. 1991;44(10):1045–53.
Delaney JA, Suissa S. The case-crossover study design in pharmacoepidemiology. Stat Methods Med Res. 2009;18(1):53–65. doi:10.1177/0962280208092346.
Rothman KJ. Modern epidemiology. Boston: Little, Brown and Company; 1986.
Hosmer DW, Lemeshow S. Confidence interval estimation of interaction. Epidemiology. 1992;3(5):452–6.
Assmann SF, Hosmer DW, Lemeshow S, Mundt KA. Confidence intervals for measures of interaction. Epidemiology. 1996;7(3):286–90.
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50(3):346–63. doi:10.1002/bimj.200810425.
Maclure M, Mittleman MA. Should we use a case-crossover design? Annu Rev Public Health. 2000;21:193–221. doi:10.1146/annurev.publhealth.21.1.193.
Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998;36(1):8–27.
R Development Core Team. R: a language and environment for statistical computing. R version 3.2.0. Vienna: R Foundation for Statistical Computing; 2015.
Charbit B, Alvarez JC, Dasque E, Abe E, Demolis JL, Funck-Brentano C. Droperidol and ondansetron-induced QT interval prolongation: a clinical drug interaction study. Anesthesiology. 2008;109(2):206–12. doi:10.1097/ALN.0b013e31817fd8c8.
Tisdale JE, Jaynes HA, Kingery JR, Mourad NA, Trujillo TN, Overholser BR, et al. Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ Cardiovasc Qual Outcomes. 2013;6(4):479–87. doi:10.1161/CIRCOUTCOMES.113.000152.
Piotrovsky V. Pharmacokinetic-pharmacodynamic modeling in the data analysis and interpretation of drug-induced QT/QTc prolongation. AAPS J. 2005;7(3):E609–24. doi:10.1208/aapsj070363.
Martin DE, Zussman BD, Everitt DE, Benincosa LJ, Etheredge RC, Jorkasky DK. Paroxetine does not affect the cardiac safety and pharmacokinetics of terfenadine in healthy adult men. J Clin Psychopharmacol. 1997;17(6):451–9.
Bush SE, Hatton RC, Winterstein AG, Thomson MR, Woo GW. Effects of concomitant amiodarone and haloperidol on Q-Tc interval prolongation. Am J Health Syst Pharm. 2008;65(23):2232–6. doi:10.2146/ajhp080039.
Roden DM. Taking the “idio” out of “idiosyncratic”: predicting torsades de pointes. Pacing Clin Electrophysiol. 1998;21(5):1029–34.
Rabkin SW. Impact of age and sex on QT prolongation in patients receiving psychotropics. Can J Psychiatry. 2015;60(5):206–14.
Mason JW, Ramseth DJ, Chanter DO, Moon TE, Goodman DB, Mendzelevski B. Electrocardiographic reference ranges derived from 79,743 ambulatory subjects. J Electrocardiol. 2007;40(3):228–34. doi:10.1016/j.jelectrocard.2006.09.003.
Vieweg WV, Wood MA, Fernandez A, Beatty-Brooks M, Hasnain M, Pandurangi AK. Proarrhythmic risk with antipsychotic and antidepressant drugs: implications in the elderly. Drugs Aging. 2009;26(12):997–1012. doi:10.2165/11318880-000000000-00000.
Curtis LH, Ostbye T, Sendersky V, Hutchison S, Allen LaPointe NM, Al-Khatib SM, et al. Prescription of QT-prolonging drugs in a cohort of about 5 million outpatients. Am J Med. 2003;114(2):135–41.
Baptista R, Silva S, Dias P, Monteiro P, Feio J, Providencia LA. In-hospital prescription of QT-prolonging drugs in a cohort of more than 100,000 patients. Int J Cardiol. 2011;147(1):165–6. doi:10.1016/j.ijcard.2010.09.076.
Seidling HM, Klein U, Schaier M, Czock D, Theile D, Pruszydlo MG, et al. What, if all alerts were specific - estimating the potential impact on drug interaction alert burden. Int J Med Inform. 2014;83(4):285–91. doi:10.1016/j.ijmedinf.2013.12.006.
van der Sijs H, Kowlesar R, Aarts J, Berg M, Vulto A, van Gelder T. Unintended consequences of reducing QT-alert overload in a computerized physician order entry system. Eur J Clin Pharmacol. 2009;65(9):919–25. doi:10.1007/s00228-009-0654-3.
Maclure M, Fireman B, Nelson JC, Hua W, Shoaibi A, Paredes A, et al. When should case-only designs be used for safety monitoring of medical products? Pharmacoepidemiol Drug Saf. 2012;21(Suppl 1):50–61. doi:10.1002/pds.2330.
Groenwold RH, Nelson DB, Nichol KL, Hoes AW, Hak E. Sensitivity analyses to estimate the potential impact of unmeasured confounding in causal research. Int J Epidemiol. 2010;39(1):107–17. doi:10.1093/ije/dyp332.
Lin DY, Psaty BM, Kronmal RA. Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics. 1998;54(3):948–63.
Ryan P, Suchard MA, Schuemie M, Madigan D. Learning from epidemiology: interpreting observational database studies for the effects of medical products. Stat Biopharm Res. 2013;5(3):170–9. doi:10.1080/19466315.2013.791638.
Olesen C, Harbig P, Barat I, Damsgaard EM. Absence of ‘over-the-counter’ medicinal products in on-line prescription records: a risk factor of overlooking interactions in the elderly. Pharmacoepidemiol Drug Saf. 2013;22(2):145–50. doi:10.1002/pds.3362.
Michels G, Kochanek M, Pfister R. Life-threatening cardiac arrhythmias due to drug-induced QT prolongation: a retrospective study over 6 years from a medical intensive care unit. Med Klin Intensivmed Notfmed. 2016;111(4):302–9. doi:10.1007/s00063-015-0071-6.
Marcus R. The powers of some tests of the equality of normal means against an ordered alternative. Biometrika. 1976;63(1):177–83. doi:10.1093/biomet/63.1.177.
Acknowledgements
The authors would like to thank Andreas Wirtherle for support using the database of the AiDKlinik ® drug information system.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
The German Ministry of Education and Research (“Bundesministerium für Bildung und Forschung” [BMBF]) supported the conduct of the study under Grant Numbers 01GY1329B and 01GY1320B.
Conflicts of interest
Andreas D. Meid, Anna von Medem, Dirk Heider, Jürgen-Bernhard Adler, Christian Günster, Hanna M. Seidling, Renate Quinzler, Hans-Helmut König, and Walter E. Haefeli have no conflicts of interest that are directly relevant to the content of this study.
Ethical Approval
In Germany by law, retrospective claims analyses do not require ethics committee approval.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Meid, A.D., von Medem, A., Heider, D. et al. Investigating the Additive Interaction of QT-Prolonging Drugs in Older People Using Claims Data. Drug Saf 40, 133–144 (2017). https://doi.org/10.1007/s40264-016-0477-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40264-016-0477-y