Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Investigating the Additive Interaction of QT-Prolonging Drugs in Older People Using Claims Data

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

Drugs that potentially prolong the QT interval carry the risk of life-threatening Torsades de pointes (TdP) ventricular arrhythmia.

Objective

The objective of this study was to investigate the potential additive risk for ventricular arrhythmia with concomitant prescriptions of QT-prolonging drugs.

Methods

Claims data for persons aged ≥65 years between 2010 and 2012 in Germany were analyzed and all cases hospitalized for ventricular arrhythmia were selected. In a case-crossover analysis, exposure with QT-prolonging drugs according to the Arizona Center for Education and Research on Therapeutics (AZCERT) classification of ‘known,’ ‘conditional,’ and ‘possible’ TdP risk was determined in respective event and control windows preceding hospitalization. Conditional logistic regression was applied to derive odds ratios (ORs).

Results

Among 6,849,622 health-insured persons, we identified 2572 patients newly hospitalized for ventricular arrhythmia. Drugs with ‘known’ risk were more frequently prescribed in the event window than in the control window (309 vs. 239; P < 0.001). The number of drugs with an attributed ‘known’ risk of TdP was significantly associated with hospitalization for ventricular arrhythmia (OR: 2.22; 95% confidence interval [1.51–3.25]; P < 0.001), while increased risk estimates were also obtained upon categorization into one and two or more drugs compared with no drugs for the combined group of drug with ‘known’ (1.52 [1.16–2.00]) and ‘conditional’ risk (2.20 [1.42–3.41]). Pairwise comparisons and trend tests based on these classification categories could not demonstrate a significantly increased risk of two or more drugs compared with one drug.

Conclusion

Beyond suitable single-drug classifications for QT-associated risk estimation, the situation when there is co-prescription of several drugs appears to be complex and may not be extrapolated to all possible multi-drug combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marengoni A, Pasina L, Concoreggi C, Martini G, Brognoli F, Nobili A, et al. Understanding adverse drug reactions in older adults through drug-drug interactions. Eur J Intern Med. 2014;25(9):843–6. doi:10.1016/j.ejim.2014.10.001.

    Article  CAS  PubMed  Google Scholar 

  2. Beard K. Adverse reactions as a cause of hospital admission in the aged. Drugs Aging. 1992;2(4):356–67.

    Article  CAS  PubMed  Google Scholar 

  3. Moore N, Lecointre D, Noblet C, Mabille M. Frequency and cost of serious adverse drug reactions in a department of general medicine. Br J Clin Pharmacol. 1998;45(3):301–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mjorndal T, Boman MD, Hagg S, Backstrom M, Wiholm BE, Wahlin A, et al. Adverse drug reactions as a cause for admissions to a department of internal medicine. Pharmacoepidemiol Drug Saf. 2002;11(1):65–72. doi:10.1002/pds.667.

    Article  PubMed  Google Scholar 

  5. Atkin PA, Veitch PC, Veitch EM, Ogle SJ. The epidemiology of serious adverse drug reactions among the elderly. Drugs Aging. 1999;14(2):141–52.

    Article  CAS  PubMed  Google Scholar 

  6. Bates DW, Baysari MT, Dugas M, Haefeli WE, Kushniruk AW, Lehmann CU, et al. Discussion of “Attitude of physicians towards automatic alerting in computerized physician order entry systems”. Methods Inf Med. 2013;52(2):109–27.

    CAS  PubMed  Google Scholar 

  7. Onder G, van der Cammen TJ, Petrovic M, Somers A, Rajkumar C. Strategies to reduce the risk of iatrogenic illness in complex older adults. Age Ageing. 2013;42(3):284–91. doi:10.1093/ageing/aft038.

    Article  PubMed  Google Scholar 

  8. Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329(7456):15–9. doi:10.1136/bmj.329.7456.15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brennan TA, Leape LL, Laird NM, Hebert L, Localio AR, Lawthers AG, et al. Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study I. N Engl J Med. 1991;324(6):370–6. doi:10.1056/NEJM199102073240604.

    Article  CAS  PubMed  Google Scholar 

  10. Schachtele S, Tumena T, Gassmann KG, Fromm MF, Maas R. Co-prescription of QT-interval prolonging drugs: an analysis in a large cohort of geriatric patients. PLoS One. 2016;11(5):e0155649. doi:10.1371/journal.pone.0155649.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sumic JC, Baric V, Bilic P, Herceg M, Sisek-Sprem M, Jukic V. QTc and psychopharmacs: are there any differences between monotherapy and polytherapy. Ann Gen Psychiatry. 2007;6:13. doi:10.1186/1744-859X-6-13.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sala M, Vicentini A, Brambilla P, Montomoli C, Jogia JR, Caverzasi E, et al. QT interval prolongation related to psychoactive drug treatment: a comparison of monotherapy versus polytherapy. Ann Gen Psychiatry. 2005;4(1):1. doi:10.1186/1744-859X-4-1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fayssoil A, Issi J, Guerbaa M, Raynaud JC, Heroguelle V. Torsade de pointes induced by citalopram and amiodarone. Ann Cardiol Angeiol (Paris). 2011;60(3):165–8. doi:10.1016/j.ancard.2010.12.002.

    Article  CAS  PubMed  Google Scholar 

  14. Niemeijer MN, van den Berg ME, Franco OH, Hofman A, Kors JA, Stricker BH, et al. Drugs and ventricular repolarization in a general population: the Rotterdam study. Pharmacoepidemiol Drug Saf. 2015;24(10):1036–41. doi:10.1002/pds.3853.

    Article  PubMed  Google Scholar 

  15. Haddad PM, Anderson IM. Antipsychotic-related QTc prolongation, torsade de pointes and sudden death. Drugs. 2002;62(11):1649–71.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas SH, Behr ER. Pharmacological treatment of acquired QT prolongation and torsades de pointes. Br J Clin Pharmacol. 2016;81(3):420–7. doi:10.1111/bcp.12726.

    Article  CAS  PubMed  Google Scholar 

  17. France NP, Della Pasqua O. The role of concentration-effect relationships in the assessment of QTc interval prolongation. Br J Clin Pharmacol. 2015;79(1):117–31. doi:10.1111/bcp.12443.

    Article  PubMed  Google Scholar 

  18. Frommeyer G, Eckardt L. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms. Nat Rev Cardiol. 2016;13(1):36–47. doi:10.1038/nrcardio.2015.110.

    Article  CAS  PubMed  Google Scholar 

  19. De Ponti F, Poluzzi E, Montanaro N. Organising evidence on QT prolongation and occurrence of Torsades de Pointes with non-antiarrhythmic drugs: a call for consensus. Eur J Clin Pharmacol. 2001;57(3):185–209.

    Article  PubMed  Google Scholar 

  20. Petropoulou E, Jamshidi Y, Behr ER. The genetics of pro-arrhythmic adverse drug reactions. Br J Clin Pharmacol. 2014;77(4):618–25. doi:10.1111/bcp.12208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vlachos K, Georgopoulos S, Efremidis M, Sideris A, Letsas KP. An update on risk factors for drug-induced arrhythmias. Expert Rev Clin Pharmacol. 2016;9(1):117–27. doi:10.1586/17512433.2016.1100073.

    Article  CAS  PubMed  Google Scholar 

  22. Margulis M, Sorota S. Additive effects of combined application of multiple hERG blockers. J Cardiovasc Pharmacol. 2008;51(6):549–52. doi:10.1097/FJC.0b013e31817532ee.

    Article  CAS  PubMed  Google Scholar 

  23. Friemel A, Zunkler BJ. Interactions at human ether-a-go-go-related gene channels. Toxicol Sci. 2010;114(2):346–55. doi:10.1093/toxsci/kfq011.

    Article  CAS  PubMed  Google Scholar 

  24. Ritter JM. Cardiac safety, drug-induced QT prolongation and torsade de pointes (TdP). Br J Clin Pharmacol. 2012;73(3):331–4. doi:10.1111/j.1365-2125.2012.04193.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Desta Z, Kerbusch T, Flockhart DA. Effect of clarithromycin on the pharmacokinetics and pharmacodynamics of pimozide in healthy poor and extensive metabolizers of cytochrome P450 2D6 (CYP2D6). Clin Pharmacol Ther. 1999;65(1):10–20. doi:10.1016/S0009-9236(99)70117-7.

    Article  CAS  PubMed  Google Scholar 

  26. Honig PK, Wortham DC, Zamani K, Conner DP, Mullin JC, Cantilena LR. Terfenadine-ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. JAMA. 1993;269(12):1513–8.

    Article  CAS  PubMed  Google Scholar 

  27. Boyce MJ, Baisley KJ, Warrington SJ. Pharmacokinetic interaction between domperidone and ketoconazole leads to QT prolongation in healthy volunteers: a randomized, placebo-controlled, double-blind, crossover study. Br J Clin Pharmacol. 2012;73(3):411–21. doi:10.1111/j.1365-2125.2011.04093.x.

    Article  CAS  PubMed  Google Scholar 

  28. Tamariz L, Harkins T, Nair V. A systematic review of validated methods for identifying ventricular arrhythmias using administrative and claims data. Pharmacoepidemiol Drug Saf. 2012;21(Suppl 1):148–53. doi:10.1002/pds.2340.

    Article  PubMed  Google Scholar 

  29. Hennessy S, Leonard CE, Freeman CP, Deo R, Newcomb C, Kimmel SE, et al. Validation of diagnostic codes for outpatient-originating sudden cardiac death and ventricular arrhythmia in Medicaid and Medicare claims data. Pharmacoepidemiol Drug Saf. 2010;19(6):555–62. doi:10.1002/pds.1869.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen HL, Hsiao FY. Domperidone, cytochrome P450 3A4 isoenzyme inhibitors and ventricular arrhythmia: a nationwide case-crossover study. Pharmacoepidemiol Drug Saf. 2015;24(8):841–8. doi:10.1002/pds.3814.

    Article  CAS  PubMed  Google Scholar 

  31. Tamblyn R, Lavoie G, Petrella L, Monette J. The use of prescription claims databases in pharmacoepidemiological research: the accuracy and comprehensiveness of the prescription claims database in Quebec. J Clin Epidemiol. 1995;48(8):999–1009.

    Article  CAS  PubMed  Google Scholar 

  32. German Institute of Medical Documentation and Information. ICD-10. International statistical classification of diseases and related health problems, German modification. Cologne: Deutscher Ärzte-Verlag; 2011.

  33. Quinzler R, Schmitt SP, Szecsenyi J, Haefeli WE. Optimizing information on drug exposure by collection of package code information in questionnaire surveys. Pharmacoepidemiol Drug Saf. 2007;16(9):1024–30. doi:10.1002/pds.1406.

    Article  CAS  PubMed  Google Scholar 

  34. Arizona Science Foundation. CredibleMeds®. https://crediblemeds.org/index.php?rf=US. Accessed 5 Jan 2016.

  35. Schwabe U, Paffrath D. Arzneiverordnungs-Report 2013. Heidelberg: Springer-Verlag, Berlin; 2013.

    Book  Google Scholar 

  36. Meid AD, Heider D, Adler JB, Quinzler R, Brenner H, Gunster C, et al. Comparative evaluation of methods approximating drug prescription durations in claims data: modeling, simulation, and application to real data. Pharmacoepidemiol Drug Saf. Epub. 2016;. doi:10.1002/pds.4091.

    Google Scholar 

  37. Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005;58(4):323–37. doi:10.1016/j.jclinepi.2004.10.012.

    Article  PubMed  Google Scholar 

  38. Huiart L, Ferdynus C, Dell’Aniello S, Bakiri N, Giorgi R, Suissa S. Measuring persistence to hormonal therapy in patients with breast cancer: accounting for temporary treatment discontinuation. Pharmacoepidemiol Drug Saf. 2014;23(8):882–9. doi:10.1002/pds.3631.

    PubMed  Google Scholar 

  39. Nielsen LH, Lokkegaard E, Andreasen AH, Keiding N. Using prescription registries to define continuous drug use: how to fill gaps between prescriptions. Pharmacoepidemiol Drug Saf. 2008;17(4):384–8. doi:10.1002/pds.1549.

    Article  PubMed  Google Scholar 

  40. FDA. Guidance for Industry. Drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. 2012. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm292362.pdf. Accessed 30 Jun 2015.

  41. Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol. 1991;133(2):144–53.

    Article  CAS  PubMed  Google Scholar 

  42. Therneau TM. A package for survival analysis in S. Version 2.38; 2015. https://cran.r-project.org/web/packages/survival/index.html. Accessed 5 Jan 2016.

  43. Maclure M. Taxonomic axes of epidemiologic study designs: a refutationist perspective. J Clin Epidemiol. 1991;44(10):1045–53.

    Article  CAS  PubMed  Google Scholar 

  44. Delaney JA, Suissa S. The case-crossover study design in pharmacoepidemiology. Stat Methods Med Res. 2009;18(1):53–65. doi:10.1177/0962280208092346.

    Article  PubMed  Google Scholar 

  45. Rothman KJ. Modern epidemiology. Boston: Little, Brown and Company; 1986.

    Google Scholar 

  46. Hosmer DW, Lemeshow S. Confidence interval estimation of interaction. Epidemiology. 1992;3(5):452–6.

    Article  CAS  PubMed  Google Scholar 

  47. Assmann SF, Hosmer DW, Lemeshow S, Mundt KA. Confidence intervals for measures of interaction. Epidemiology. 1996;7(3):286–90.

    Article  CAS  PubMed  Google Scholar 

  48. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50(3):346–63. doi:10.1002/bimj.200810425.

    Article  PubMed  Google Scholar 

  49. Maclure M, Mittleman MA. Should we use a case-crossover design? Annu Rev Public Health. 2000;21:193–221. doi:10.1146/annurev.publhealth.21.1.193.

    Article  CAS  PubMed  Google Scholar 

  50. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998;36(1):8–27.

    Article  CAS  PubMed  Google Scholar 

  51. R Development Core Team. R: a language and environment for statistical computing. R version 3.2.0. Vienna: R Foundation for Statistical Computing; 2015.

  52. Charbit B, Alvarez JC, Dasque E, Abe E, Demolis JL, Funck-Brentano C. Droperidol and ondansetron-induced QT interval prolongation: a clinical drug interaction study. Anesthesiology. 2008;109(2):206–12. doi:10.1097/ALN.0b013e31817fd8c8.

    Article  CAS  PubMed  Google Scholar 

  53. Tisdale JE, Jaynes HA, Kingery JR, Mourad NA, Trujillo TN, Overholser BR, et al. Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ Cardiovasc Qual Outcomes. 2013;6(4):479–87. doi:10.1161/CIRCOUTCOMES.113.000152.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Piotrovsky V. Pharmacokinetic-pharmacodynamic modeling in the data analysis and interpretation of drug-induced QT/QTc prolongation. AAPS J. 2005;7(3):E609–24. doi:10.1208/aapsj070363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin DE, Zussman BD, Everitt DE, Benincosa LJ, Etheredge RC, Jorkasky DK. Paroxetine does not affect the cardiac safety and pharmacokinetics of terfenadine in healthy adult men. J Clin Psychopharmacol. 1997;17(6):451–9.

    Article  CAS  PubMed  Google Scholar 

  56. Bush SE, Hatton RC, Winterstein AG, Thomson MR, Woo GW. Effects of concomitant amiodarone and haloperidol on Q-Tc interval prolongation. Am J Health Syst Pharm. 2008;65(23):2232–6. doi:10.2146/ajhp080039.

    Article  PubMed  Google Scholar 

  57. Roden DM. Taking the “idio” out of “idiosyncratic”: predicting torsades de pointes. Pacing Clin Electrophysiol. 1998;21(5):1029–34.

    Article  CAS  PubMed  Google Scholar 

  58. Rabkin SW. Impact of age and sex on QT prolongation in patients receiving psychotropics. Can J Psychiatry. 2015;60(5):206–14.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mason JW, Ramseth DJ, Chanter DO, Moon TE, Goodman DB, Mendzelevski B. Electrocardiographic reference ranges derived from 79,743 ambulatory subjects. J Electrocardiol. 2007;40(3):228–34. doi:10.1016/j.jelectrocard.2006.09.003.

    Article  PubMed  Google Scholar 

  60. Vieweg WV, Wood MA, Fernandez A, Beatty-Brooks M, Hasnain M, Pandurangi AK. Proarrhythmic risk with antipsychotic and antidepressant drugs: implications in the elderly. Drugs Aging. 2009;26(12):997–1012. doi:10.2165/11318880-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  61. Curtis LH, Ostbye T, Sendersky V, Hutchison S, Allen LaPointe NM, Al-Khatib SM, et al. Prescription of QT-prolonging drugs in a cohort of about 5 million outpatients. Am J Med. 2003;114(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  62. Baptista R, Silva S, Dias P, Monteiro P, Feio J, Providencia LA. In-hospital prescription of QT-prolonging drugs in a cohort of more than 100,000 patients. Int J Cardiol. 2011;147(1):165–6. doi:10.1016/j.ijcard.2010.09.076.

    Article  PubMed  Google Scholar 

  63. Seidling HM, Klein U, Schaier M, Czock D, Theile D, Pruszydlo MG, et al. What, if all alerts were specific - estimating the potential impact on drug interaction alert burden. Int J Med Inform. 2014;83(4):285–91. doi:10.1016/j.ijmedinf.2013.12.006.

    Article  PubMed  Google Scholar 

  64. van der Sijs H, Kowlesar R, Aarts J, Berg M, Vulto A, van Gelder T. Unintended consequences of reducing QT-alert overload in a computerized physician order entry system. Eur J Clin Pharmacol. 2009;65(9):919–25. doi:10.1007/s00228-009-0654-3.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Maclure M, Fireman B, Nelson JC, Hua W, Shoaibi A, Paredes A, et al. When should case-only designs be used for safety monitoring of medical products? Pharmacoepidemiol Drug Saf. 2012;21(Suppl 1):50–61. doi:10.1002/pds.2330.

    Article  PubMed  Google Scholar 

  66. Groenwold RH, Nelson DB, Nichol KL, Hoes AW, Hak E. Sensitivity analyses to estimate the potential impact of unmeasured confounding in causal research. Int J Epidemiol. 2010;39(1):107–17. doi:10.1093/ije/dyp332.

    Article  PubMed  Google Scholar 

  67. Lin DY, Psaty BM, Kronmal RA. Assessing the sensitivity of regression results to unmeasured confounders in observational studies. Biometrics. 1998;54(3):948–63.

    Article  CAS  PubMed  Google Scholar 

  68. Ryan P, Suchard MA, Schuemie M, Madigan D. Learning from epidemiology: interpreting observational database studies for the effects of medical products. Stat Biopharm Res. 2013;5(3):170–9. doi:10.1080/19466315.2013.791638.

    Article  Google Scholar 

  69. Olesen C, Harbig P, Barat I, Damsgaard EM. Absence of ‘over-the-counter’ medicinal products in on-line prescription records: a risk factor of overlooking interactions in the elderly. Pharmacoepidemiol Drug Saf. 2013;22(2):145–50. doi:10.1002/pds.3362.

    Article  CAS  PubMed  Google Scholar 

  70. Michels G, Kochanek M, Pfister R. Life-threatening cardiac arrhythmias due to drug-induced QT prolongation: a retrospective study over 6 years from a medical intensive care unit. Med Klin Intensivmed Notfmed. 2016;111(4):302–9. doi:10.1007/s00063-015-0071-6.

    Article  CAS  PubMed  Google Scholar 

  71. Marcus R. The powers of some tests of the equality of normal means against an ordered alternative. Biometrika. 1976;63(1):177–83. doi:10.1093/biomet/63.1.177.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Andreas Wirtherle for support using the database of the AiDKlinik ® drug information system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter E. Haefeli.

Ethics declarations

Funding

The German Ministry of Education and Research (“Bundesministerium für Bildung und Forschung” [BMBF]) supported the conduct of the study under Grant Numbers 01GY1329B and 01GY1320B.

Conflicts of interest

Andreas D. Meid, Anna von Medem, Dirk Heider, Jürgen-Bernhard Adler, Christian Günster, Hanna M. Seidling, Renate Quinzler, Hans-Helmut König, and Walter E. Haefeli have no conflicts of interest that are directly relevant to the content of this study.

Ethical Approval

In Germany by law, retrospective claims analyses do not require ethics committee approval.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meid, A.D., von Medem, A., Heider, D. et al. Investigating the Additive Interaction of QT-Prolonging Drugs in Older People Using Claims Data. Drug Saf 40, 133–144 (2017). https://doi.org/10.1007/s40264-016-0477-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-016-0477-y

Keywords

Navigation