Abstract
We investigate a simple holographic model for cold and dense deconfined QCD matter consisting of three quark flavors. Varying the single free parameter of the model and utilizing a Chiral Effective Theory equation of state (EoS) for nuclear matter, we find four different compact star solutions: traditional neutron stars, strange quark stars, as well as two non-standard solutions we refer to as hybrid stars of the second and third kind (HS2 and HS3). The HS2s are composed of a nuclear matter core and a crust made of stable strange quark matter, while the HS3s have both a quark mantle and a nuclear crust on top of a nuclear matter core. For all types of stars constructed, we determine not only their mass-radius relations, but also tidal deformabilities, Love numbers, as well as moments of inertia and the mass distribution. We find that there exists a range of parameter values in our model, for which the novel hybrid stars have properties in very good agreement with all existing bounds on the stationary properties of compact stars. In particular, the tidal deformabilities of these solutions are smaller than those of ordinary neutron stars of the same mass, implying that they provide an excellent fit to the recent gravitational wave data GW170817 of LIGO and Virgo. The assumptions underlying the viability of the different star types, in particular those corresponding to absolutely stable quark matter, are finally discussed at some length.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J.M. Lattimer and M. Prakash, The physics of neutron stars, Science 304 (2004) 536 [astro-ph/0405262] [INSPIRE].
N. Itoh, Hydrostatic Equilibrium of Hypothetical Quark Stars, Prog. Theor. Phys. 44 (1970) 291 [INSPIRE].
A.R. Bodmer, Collapsed nuclei, Phys. Rev. D 4 (1971) 1601 [INSPIRE].
H. Terazawa, Quark shell model and superheavy hypernucleus, in 2nd KEK Symposium on Radiation Dosimetry, Tsukuba, Japan, March 22–23, 1979 (1979) [INSPIRE].
E. Farhi and R.L. Jaffe, Strange Matter, Phys. Rev. D 30 (1984) 2379 [INSPIRE].
E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30 (1984) 272 [INSPIRE].
E.S. Fraga, R.D. Pisarski and J. Schaffner-Bielich, Small, dense quark stars from perturbative QCD, Phys. Rev. D 63 (2001) 121702 [hep-ph/0101143] [INSPIRE].
F. Weber, Strange quark matter and compact stars, Prog. Part. Nucl. Phys. 54 (2005) 193 [astro-ph/0407155] [INSPIRE].
S. Postnikov, M. Prakash and J.M. Lattimer, Tidal Love Numbers of Neutron and Self-Bound Quark Stars, Phys. Rev. D 82 (2010) 024016 [arXiv:1004.5098] [INSPIRE].
A. Drago, A. Lavagno and G. Pagliara, Can very compact and very massive neutron stars both exist?, Phys. Rev. D 89 (2014) 043014 [arXiv:1309.7263] [INSPIRE].
N. Brambilla et al., QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives, Eur. Phys. J. C 74 (2014) 2981 [arXiv:1404.3723] [INSPIRE].
P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009)010 (2009) [arXiv:1005.0539] [INSPIRE].
B.A. Freedman and L.D. McLerran, Fermions and Gauge Vector Mesons at Finite Temperature and Density. 3. The Ground State Energy of a Relativistic Quark Gas, Phys. Rev. D 16 (1977) 1169 [INSPIRE].
A. Vuorinen, The Pressure of QCD at finite temperatures and chemical potentials, Phys. Rev. D 68 (2003) 054017 [hep-ph/0305183] [INSPIRE].
A. Kurkela, P. Romatschke and A. Vuorinen, Cold Quark Matter, Phys. Rev. D 81 (2010) 105021 [arXiv:0912.1856] [INSPIRE].
A. Kurkela and A. Vuorinen, Cool quark matter, Phys. Rev. Lett. 117 (2016) 042501 [arXiv:1603.00750] [INSPIRE].
M. Buballa, NJLS model analysis of quark matter at large density, Phys. Rept. 407 (2005) 205 [hep-ph/0402234] [INSPIRE].
J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].
J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].
J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].
A. Adams, L.D. Carr, T. Schäfer, P. Steinberg and J.E. Thomas, Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas and Holographic Duality, New J. Phys. 14 (2012) 115009 [arXiv:1205.5180] [INSPIRE].
O. Bergman, G. Lifschytz and M. Lippert, Holographic Nuclear Physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [INSPIRE].
M. Rozali, H.-H. Shieh, M. Van Raamsdonk and J. Wu, Cold Nuclear Matter In Holographic QCD, JHEP 01 (2008) 053 [arXiv:0708.1322] [INSPIRE].
K.-Y. Kim, S.-J. Sin and I. Zahed, Dense holographic QCD in the Wigner-Seitz approximation, JHEP 09 (2008) 001 [arXiv:0712.1582] [INSPIRE].
Y. Kim, C.-H. Lee, I.J. Shin and M.-B. Wan, Holographic equations of state and astrophysical compact objects, JHEP 10 (2011) 111 [arXiv:1108.6139] [INSPIRE].
V. Kaplunovsky, D. Melnikov and J. Sonnenschein, Baryonic Popcorn, JHEP 11 (2012) 047 [arXiv:1201.1331] [INSPIRE].
K. Ghoroku, K. Kubo, M. Tachibana and F. Toyoda, Holographic cold nuclear matter and neutron star, Int. J. Mod. Phys. A 29 (2014) 1450060 [arXiv:1311.1598] [INSPIRE].
S.-w. Li, A. Schmitt and Q. Wang, From holography towards real-world nuclear matter, Phys. Rev. D 92 (2015) 026006 [arXiv:1505.04886] [INSPIRE].
M. Elliot-Ripley, P. Sutcliffe and M. Zamaklar, Phases of kinky holographic nuclear matter, JHEP 10 (2016) 088 [arXiv:1607.04832] [INSPIRE].
P. Burikham, E. Hirunsirisawat and S. Pinkanjanarod, Thermodynamic Properties of Holographic Multiquark and the Multiquark Star, JHEP 06 (2010) 040 [arXiv:1003.5470] [INSPIRE].
Y. Kim, I.J. Shin, C.-H. Lee and M.-B. Wan, Explicit flavor symmetry breaking and holographic compact stars, J. Korean Phys. Soc. 66 (2015) 578 [arXiv:1404.3474] [INSPIRE].
C. Hoyos, D. Rodríguez Fernández, N. Jokela and A. Vuorinen, Holographic quark matter and neutron stars, Phys. Rev. Lett. 117 (2016) 032501 [arXiv:1603.02943] [INSPIRE].
C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Breaking the sound barrier in AdS/CFT, Phys. Rev. D 94 (2016) 106008 [arXiv:1609.03480] [INSPIRE].
C. Ecker, C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Stiff phases in strongly coupled gauge theories with holographic duals, JHEP 11 (2017) 031 [arXiv:1707.00521] [INSPIRE].
M.G. Alford, K. Rajagopal and F. Wilczek, QCD at finite baryon density: Nucleon droplets and color superconductivity, Phys. Lett. B 422 (1998) 247 [hep-ph/9711395] [INSPIRE].
M.G. Alford, K. Rajagopal and F. Wilczek, Color flavor locking and chiral symmetry breaking in high density QCD, Nucl. Phys. B 537 (1999) 443 [hep-ph/9804403] [INSPIRE].
M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [INSPIRE].
A.F. Faedo, D. Mateos, C. Pantelidou and J. Tarrio, Towards a Holographic Quark Matter Crystal, JHEP 10 (2017) 139 [arXiv:1707.06989] [INSPIRE].
N. Jokela, M. Järvinen and J. Remes, Holographic QCD in the Veneziano limit and neutron stars, arXiv:1809.07770 [INSPIRE].
K. Hebeler, J.M. Lattimer, C.J. Pethick and A. Schwenk, Equation of state and neutron star properties constrained by nuclear physics and observation, Astrophys. J. 773 (2013) 11 [arXiv:1303.4662] [INSPIRE].
Virgo and LIGO Scientific collaborations, B. Abbott et al., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].
D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [INSPIRE].
S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [INSPIRE].
D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].
A. Karch and A. O’Bannon, Holographic thermodynamics at finite baryon density: Some exact results, JHEP 11 (2007) 074 [arXiv:0709.0570] [INSPIRE].
D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [INSPIRE].
J. Erdmenger, M. Kaminski, P. Kerner and F. Rust, Finite baryon and isospin chemical potential in AdS/CFT with flavor, JHEP 11 (2008) 031 [arXiv:0807.2663] [INSPIRE].
M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [INSPIRE].
P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: Holographic Pion Superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [INSPIRE].
T. Faulkner and H. Liu, Condensed matter physics of a strongly coupled gauge theory with quarks: Some novel features of the phase diagram, arXiv:0812.4278 [INSPIRE].
M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [INSPIRE].
J. Erdmenger, V. Grass, P. Kerner and T.H. Ngo, Holographic Superfluidity in Imbalanced Mixtures, JHEP 08 (2011) 037 [arXiv:1103.4145] [INSPIRE].
N. Jokela and A.V. Ramallo, Universal properties of cold holographic matter, Phys. Rev. D 92 (2015) 026004 [arXiv:1503.04327] [INSPIRE].
G. Itsios, N. Jokela and A.V. Ramallo, Collective excitations of massive flavor branes, Nucl. Phys. B 909 (2016) 677 [arXiv:1602.06106] [INSPIRE].
A. Karch, M. Kulaxizi and A. Parnachev, Notes on Properties of Holographic Matter, JHEP 11 (2009) 017 [arXiv:0908.3493] [INSPIRE].
M. Alford, M. Braby, M.W. Paris and S. Reddy, Hybrid stars that masquerade as neutron stars, Astrophys. J. 629 (2005) 969 [nucl-th/0411016] [INSPIRE].
L. McLerran and R.D. Pisarski, Phases of cold, dense quarks at large N c, Nucl. Phys. A 796 (2007) 83 [arXiv:0706.2191] [INSPIRE].
I. Tews, T. Krüger, K. Hebeler and A. Schwenk, Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory, Phys. Rev. Lett. 110 (2013) 032504 [arXiv:1206.0025] [INSPIRE].
J.P. Pereira, C.V. Flores and G. Lugones, Phase transition effects on the dynamical stability of hybrid neutron stars, Astrophys. J. 860 (2018) 12 [arXiv:1706.09371] [INSPIRE].
J.R. Oppenheimer and G.M. Volkoff, On Massive neutron cores, Phys. Rev. 55 (1939) 374 [INSPIRE].
S. Chandrasekhar, Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity, Phys. Rev. Lett. 12 (1964) 114 [INSPIRE].
S. Chandrasekhar, The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity, Astrophys. J. 140 (1964) 417 [Erratum ibid. 140 (1964) 1342] [INSPIRE].
M. Alford and S. Reddy, Compact stars with color superconducting quark matter, Phys. Rev. D 67 (2003) 074024 [nucl-th/0211046] [INSPIRE].
J.L. Zdunik and P. Haensel, Maximum mass of neutron stars and strange neutron-star cores, Astron. Astrophys. 551 (2013) A61 [arXiv:1211.1231] [INSPIRE].
N. Glendenning, Compact Stars. Nuclear Physics, Particle Physics and General Relativity, Springer (1996).
C.S. Kochanek, Coalescing binary neutron stars, Astrophys. J. 398 (1992) 234 [INSPIRE].
L. Bildsten and C. Cutler, Tidal interactions of inspiraling compact binaries, Astrophys. J. 400 (1992) 175 [INSPIRE].
K.D. Kokkotas and G. Schaefer, Tidal and tidal resonant effects in coalescing binaries, Mon. Not. Roy. Astron. Soc. 275 (1995) 301 [gr-qc/9502034] [INSPIRE].
K. Taniguchi and M. Shibata, Gravitational radiation from corotating binary neutron stars of incompressible fluid in the first postNewtonian approximation of general relativity, Phys. Rev. D 58 (1998) 084012 [gr-qc/9807005] [INSPIRE].
J.A. Pons, E. Berti, L. Gualtieri, G. Miniutti and V. Ferrari, Gravitational signals emitted by a point mass orbiting a neutron star: Effects of stellar structure, Phys. Rev. D 65 (2002) 104021 [gr-qc/0111104] [INSPIRE].
E. Berti, J.A. Pons, G. Miniutti, L. Gualtieri and V. Ferrari, Are PostNewtonian templates faithful and effectual in detecting gravitational signals from neutron star binaries?, Phys. Rev. D 66 (2002) 064013 [gr-qc/0208011] [INSPIRE].
T. Mora and C.M. Will, A PostNewtonian diagnostic of quasiequilibrium binary configurations of compact objects, Phys. Rev. D 69 (2004) 104021 [Erratum ibid. D 71 (2005) 129901] [gr-qc/0312082] [INSPIRE].
D. Hansen, Dynamical evolution and leading order gravitational wave emission of Riemann-S binaries, Gen. Rel. Grav. 38 (2006) 1173 [gr-qc/0511033] [INSPIRE].
E.E. Flanagan and T. Hinderer, Constraining neutron star tidal Love numbers with gravitational wave detectors, Phys. Rev. D 77 (2008) 021502 [arXiv:0709.1915] [INSPIRE].
B. Margalit and B.D. Metzger, Constraining the Maximum Mass of Neutron Stars From Multi-Messenger Observations of GW170817, Astrophys. J. 850 (2017) L19 [arXiv:1710.05938] [INSPIRE].
A. Bauswein, O. Just, H.-T. Janka and N. Stergioulas, Neutron-star radius constraints from GW170817 and future detections, Astrophys. J. 850 (2017) L34 [arXiv:1710.06843] [INSPIRE].
T. Gupta, B. Majumder, K. Yagi and N. Yunes, I-Love-Q Relations for Neutron Stars in dynamical Chern Simons Gravity, Class. Quant. Grav. 35 (2018) 025009 [arXiv:1710.07862] [INSPIRE].
E. Zhou, A. Tsokaros, L. Rezzolla, R. Xu and K. Uryū, Uniformly rotating, axisymmetric and triaxial quark stars in general relativity, Phys. Rev. D 97 (2018) 023013 [arXiv:1711.00198] [INSPIRE].
L. Rezzolla, E.R. Most and L.R. Weih, Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars, Astrophys. J. 852 (2018) L25 [arXiv:1711.00314] [INSPIRE].
P. Pósfay, G.G. Barnaföldi and A. Jakovác, The effect of quantum fluctuations in compact star observables, Publ. Astron. Soc. Austral. 35 (2018) 19 [arXiv:1710.05410] [INSPIRE].
X.-Y. Lai, Y.-W. Yu, E.-P. Zhou, Y.-Y. Li and R.-X. Xu, Merging Strangeon Stars, Res. Astron. Astrophys. 18 (2018) 024 [arXiv:1710.04964] [INSPIRE].
E. Annala, T. Gorda, A. Kurkela and A. Vuorinen, Gravitational-wave constraints on the neutron-star-matter Equation of State, Phys. Rev. Lett. 120 (2018) 172703 [arXiv:1711.02644] [INSPIRE].
D. Radice, A. Perego, F. Zappa and S. Bernuzzi, GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations, Astrophys. J. 852 (2018) L29 [arXiv:1711.03647] [INSPIRE].
A. Ayriyan, N.U. Bastian, D. Blaschke, H. Grigorian, K. Maslov and D.N. Voskresensky, Robustness of third family solutions for hybrid stars against mixed phase effects, Phys. Rev. C 97 (2018) 045802 [arXiv:1711.03926] [INSPIRE].
E.-P. Zhou, X. Zhou and A. Li, Constraints on interquark interaction parameters with GW170817 in a binary strange star scenario, Phys. Rev. D 97 (2018) 083015 [arXiv:1711.04312] [INSPIRE].
H. Yang, W.E. East and L. Lehner, Can we distinguish low mass black holes in neutron star binaries?, Astrophys. J. 856 (2018) 110 [arXiv:1710.05891] [INSPIRE].
K. Yagi and N. Yunes, Approximate Universal Relations for Neutron Stars and Quark Stars, Phys. Rept. 681 (2017) 1 [arXiv:1608.02582] [INSPIRE].
T. Hinderer, Tidal Love numbers of neutron stars, Astrophys. J. 677 (2008) 1216 [arXiv:0711.2420] [INSPIRE].
T. Hinderer, B.D. Lackey, R.N. Lang and J.S. Read, Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral, Phys. Rev. D 81 (2010) 123016 [arXiv:0911.3535] [INSPIRE].
T. Binnington and E. Poisson, Relativistic theory of tidal Love numbers, Phys. Rev. D 80 (2009) 084018 [arXiv:0906.1366] [INSPIRE].
T. Damour and A. Nagar, Relativistic tidal properties of neutron stars, Phys. Rev. D 80 (2009) 084035 [arXiv:0906.0096] [INSPIRE].
P. Landry and E. Poisson, Relativistic theory of surficial Love numbers, Phys. Rev. D 89 (2014) 124011 [arXiv:1404.6798] [INSPIRE].
K. Yagi and N. Yunes, I-Love-Q Relations in Neutron Stars and their Applications to Astrophysics, Gravitational Waves and Fundamental Physics, Phys. Rev. D 88 (2013) 023009 [arXiv:1303.1528] [INSPIRE].
C.A. Raithel, F. Ozel and D. Psaltis, Model-Independent Inference of Neutron Star Radii from Moment of Inertia Measurements, Phys. Rev. C 93 (2016) 032801 [arXiv:1603.06594] [INSPIRE].
A. Kurkela, E.S. Fraga, J. Schaffner-Bielich and A. Vuorinen, Constraining neutron star matter with Quantum Chromodynamics, Astrophys. J. 789 (2014) 127 [arXiv:1402.6618] [INSPIRE].
A. Anabalon, T. Andrade, D. Astefanesei and R. Mann, Universal Formula for the Holographic Speed of Sound, Phys. Lett. B 781 (2018) 547 [arXiv:1702.00017] [INSPIRE].
S.L. Detweiler and J.R. Ipser, Variational principle and a stability-criterion for nonradial modes of pulsation of stellar models in general relativity, Astrophys. J. 185 (1973) 685 [INSPIRE].
A. Kovetz, Schwarzschild’s Criterion for Convective Instability in General Relativity, Z. Astrophys. 66 (1967) 446.
B.F. Schutz Jr., Taylor Instabilities in Relativistic Stars, Astrophys. J. 161 (1970) 1173.
S.L. Shapiro and S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: The physics of compact objects, Wiley-VCH (1983).
G. Chanmugam, Radial oscillations of zero-temperature white dwarfs and neutron stars below nuclear densities, Astrophys. J. 217 (1977) 799.
J.B. Hartle and K.S. Thorne, Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars, Astrophys. J. 153 (1968) 807 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1711.06244
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Annala, E., Ecker, C., Hoyos, C. et al. Holographic compact stars meet gravitational wave constraints. J. High Energ. Phys. 2018, 78 (2018). https://doi.org/10.1007/JHEP12(2018)078
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2018)078