Abstract
We construct the five-dimensional supergravity dual of the \( \mathcal{N} \) = 1∗ mass deformation of the \( \mathcal{N} \) = 4 supersymmetric Yang-Mills theory on S 4 and use it to calculate the universal contribution to the corresponding S 4 free energy at large ’t Hooft coupling in the planar limit. The holographic RG flow solutions are smooth and preserve four supercharges. As a novel feature compared to the holographic duals of \( \mathcal{N} \) = 1∗ on \( {\mathbb{R}}^4 \), in our backgrounds the five-dimensional dilaton has a non-trivial profile, and the gaugino conden- sate is fixed in terms of the mass-deformation parameters. Important aspects of the analysis involve characterizing the ambiguities in the partition function of non-conformal \( \mathcal{N} \) = 1 supersymmetric theories on S 4 as well as the action of S-duality on the \( \mathcal{N} \) = 1∗ theory.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].
I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].
J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].
L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [INSPIRE].
K. Pilch and N.P. Warner, N = 1 supersymmetric renormalization group flows from IIB supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 [hep-th/0006066] [INSPIRE].
O. Aharony, N. Dorey and S.P. Kumar, New modular invariance in the N = 1∗ theory, operator mixings and supergravity singularities, JHEP 06 (2000) 026 [hep-th/0006008] [INSPIRE].
N. Dorey and S.P. Kumar, Softly broken N = 4 supersymmetry in the large-N limit, JHEP 02 (2000) 006 [hep-th/0001103] [INSPIRE].
N. Dorey, T.J. Hollowood and S.P. Kumar, An exact elliptic superpotential for N = 1∗ deformations of finite N = 2 gauge theories, Nucl. Phys. B 624 (2002) 95 [hep-th/0108221] [INSPIRE].
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].
D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].
F. Benini and S. Cremonesi, Partition functions of N = (2, 2) gauge theories on S 2 and vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].
N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact results in D = 2 supersymmetric gauge theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].
G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].
E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere partition functions and the Zamolodchikov metric, JHEP 11 (2014) 001 [arXiv:1405.7271] [INSPIRE].
J. Gomis and N. Ishtiaque, Kähler potential and ambiguities in 4d N = 2 SCFTs, JHEP 04 (2015) 169 [arXiv:1409.5325] [INSPIRE].
K. Papadodimas, Topological anti-topological fusion in four-dimensional superconformal field theories, JHEP 08 (2010) 118 [arXiv:0910.4963] [INSPIRE].
M. Baggio, V. Niarchos and K. Papadodimas, Exact correlation functions in SU(2) N = 2 superconformal QCD, Phys. Rev. Lett. 113 (2014) 251601 [arXiv:1409.4217] [INSPIRE].
M. Baggio, V. Niarchos and K. Papadodimas, tt ∗ equations, localization and exact chiral rings in 4d N = 2 SCFTs, JHEP 02 (2015) 122 [arXiv:1409.4212] [INSPIRE].
N. Bobev, H. Elvang, D.Z. Freedman and S.S. Pufu, Holography for N = 2∗ on S 4, JHEP 07 (2014) 001 [arXiv:1311.1508] [INSPIRE].
J.G. Russo and K. Zarembo, Large-N limit of N = 2 SU(N ) gauge theories from localization, JHEP 10 (2012) 082 [arXiv:1207.3806] [INSPIRE].
A. Buchel, J.G. Russo and K. Zarembo, Rigorous test of non-conformal holography: Wilson loops in N = 2∗ theory, JHEP 03 (2013) 062 [arXiv:1301.1597] [INSPIRE].
J.G. Russo and K. Zarembo, Evidence for large-N phase transitions in N = 2∗ theory, JHEP 04 (2013) 065 [arXiv:1302.6968] [INSPIRE].
J.G. Russo and K. Zarembo, Massive N = 2 gauge theories at large-N , JHEP 11 (2013) 130 [arXiv:1309.1004] [INSPIRE].
J.G. Russo and K. Zarembo, Localization at large-N , arXiv:1312.1214 [INSPIRE].
A. Buchel, Localization and holography in N = 2 gauge theories, JHEP 08 (2013) 004 [arXiv:1304.5652] [INSPIRE].
X. Chen-Lin, J. Gordon and K. Zarembo, N = 2∗ super-Yang-Mills theory at strong coupling, JHEP 11 (2014) 057 [arXiv:1408.6040] [INSPIRE].
J.G. Russo, A note on perturbation series in supersymmetric gauge theories, JHEP 06 (2012) 038 [arXiv:1203.5061] [INSPIRE].
J.G. Russo, N = 2 gauge theories and quantum phases, JHEP 12 (2014) 169 [arXiv:1411.2602] [INSPIRE].
X. Chen-Lin and K. Zarembo, Higher rank Wilson loops in N = 2∗ super-Yang-Mills theory, JHEP 03 (2015) 147 [arXiv:1502.01942] [INSPIRE].
X. Chen-Lin, A. Dekel and K. Zarembo, Holographic Wilson loops in symmetric representations in N = 2∗ super-Yang-Mills theory, JHEP 02 (2016) 109 [arXiv:1512.06420] [INSPIRE].
K. Zarembo, Strong-coupling phases of planar N = 2∗ super-Yang-Mills theory, Theor. Math. Phys. 181 (2014) 1522 [arXiv:1410.6114] [INSPIRE].
A. Karch, B. Robinson and C.F. Uhlemann, Supersymmetric D3/D7 for holographic flavors on curved space, JHEP 11 (2015) 112 [arXiv:1508.06996] [INSPIRE].
A. Karch, B. Robinson and C.F. Uhlemann, Precision test of gauge-gravity duality with flavor, Phys. Rev. Lett. 115 (2015) 261601 [arXiv:1509.00013] [INSPIRE].
C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].
R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].
N. Dorey, An elliptic superpotential for softly broken N = 4 supersymmetric Yang-Mills theory, JHEP 07 (1999) 021 [hep-th/9906011] [INSPIRE].
M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 supergravity in five-dimensions, Phys. Lett. B 154 (1985) 268 [INSPIRE].
M. Günaydin, L.J. Romans and N.P. Warner, Compact and noncompact gauged supergravity theories in five-dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].
M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8 D = 5 supergravity, Nucl. Phys. B 259 (1985) 460 [INSPIRE].
K. Pilch and N.P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton, Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [INSPIRE].
R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N =1 supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 [hep-th/9503121] [INSPIRE].
D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].
L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].
S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].
D.Z. Freedman and S.S. Pufu, The holography of F -maximization, JHEP 03 (2014) 135 [arXiv:1302.7310] [INSPIRE].
G. Knodel, J.T. Liu and L.A. Pando Zayas, On N = 1 partition functions without R-symmetry, JHEP 03 (2015) 132 [arXiv:1412.4804] [INSPIRE].
K.A. Intriligator, Bonus symmetries of N = 4 super Yang-Mills correlation functions via AdS duality, Nucl. Phys. B 551 (1999) 575 [hep-th/9811047] [INSPIRE].
M. Waldschmidt, P. Moussa, J.M. Luck and C. Itzykson eds., From number theory to physics, Les Houches, (1989), Springer, Germany (1992).
K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].
A. Baguet, O. Hohm and H. Samtleben, Consistent type IIB reductions to maximal 5D supergravity, Phys. Rev. D 92 (2015) 065004 [arXiv:1506.01385] [INSPIRE].
N.P. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett. B 128 (1983) 169 [INSPIRE].
K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].
J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].
J. Kalkkinen, D. Martelli and W. Mueck, Holographic renormalization and anomalies, JHEP 04 (2001) 036 [hep-th/0103111] [INSPIRE].
D. Martelli and W. Mueck, Holographic renormalization and Ward identities with the Hamilton-Jacobi method, Nucl. Phys. B 654 (2003) 248 [hep-th/0205061] [INSPIRE].
I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys. 8 (2005) 73 [hep-th/0404176] [INSPIRE].
H. Elvang and M. Hadjiantonis, A practical approach to the Hamilton-Jacobi formulation of holographic renormalization, JHEP 06 (2016) 046 [arXiv:1603.04485] [INSPIRE].
K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].
M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].
A. Khavaev and N.P. Warner, A class of N = 1 supersymmetric RG flows from five-dimensional N = 8 supergravity, Phys. Lett. B 495 (2000) 215 [hep-th/0009159] [INSPIRE].
N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Supersymmetric charged clouds in AdS 5, JHEP 03 (2011) 070 [arXiv:1005.3552] [INSPIRE].
D. Cassani, J. Lorenzen and D. Martelli, Comments on supersymmetric solutions of minimal gauged supergravity in five dimensions, Class. Quant. Grav. 33 (2016) 115013 [arXiv:1510.01380] [INSPIRE].
B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The Casimir energy in curved space and its supersymmetric counterpart, JHEP 07 (2015) 043 [arXiv:1503.05537] [INSPIRE].
B. Assel, D. Cassani and D. Martelli, Supersymmetric counterterms from new minimal supergravity, JHEP 11 (2014) 135 [arXiv:1410.6487] [INSPIRE].
D. Cassani and D. Martelli, The gravity dual of supersymmetric gauge theories on a squashed S 1 × S 3, JHEP 08 (2014) 044 [arXiv:1402.2278] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1605.00656
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Bobev, N., Elvang, H., Kol, U. et al. Holography for \( \mathcal{N} \) = 1∗ on S 4 . J. High Energ. Phys. 2016, 95 (2016). https://doi.org/10.1007/JHEP10(2016)095
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2016)095