Abstract
We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, z, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, γ. Moreover, we compute the critical magnetic field and investigate its dependence on the parameters γ and z. Finally, we show numerically that the Weyl coupling parameter γ and the Lifshitz dynamical exponent z together control the size and strength of the conductivity peak and the ratio of gap frequency over critical temperature ω g /T c .
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
H. Kamerlingh Onnes, The superconductivity of mercury, Comm. Phys. Lab. Univ. Leiden (1911) 122b.
W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfahigkeit, Naturwiss. 21 (1933) 787.
J. Bardeen, L.N. Cooper and J.R. Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106 (1957) 162 [INSPIRE].
J. Bardeen, L.N. Cooper and J.R. Schrieffer, Theory of superconductivity, Phys. Rev. 108 (1957) 1175 [INSPIRE].
V.V. Struzhkin, Superconductivity in compressed hydrogen-rich materials: pressing on hydrogen, Physica C 514 (2015) 77.
M.M. Davari Esfahani et al., Superconductivity of novel tin hydrides (Sn n H m ) under pressure, Scient. Rept. 6 (2016) 22873 [arXiv:1512.07604].
J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002.
S.S. Gubser and A. Nellore, Low-temperature behavior of the abelian higgs model in Anti-de Sitter space, JHEP 04 (2009) 008 [arXiv:0810.4554] [INSPIRE].
S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
D. Momeni, S.A.H. Mansoori and R. Myrzakulov, Holographic complexity in gauge/string superconductors, Phys. Lett. B 756 (2016) 354 [arXiv:1601.03011] [INSPIRE].
D. Momeni et al., Holographic entanglement entropy in 2D holographic superconductor via AdS 3 /CF T 2, Phys. Lett. B 747 (2015) 417 [arXiv:1503.02896] [INSPIRE].
S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].
S.-J. Sin, S.-S. Xu and Y. Zhou, Holographic superconductor for a Lifshitz fixed point, Int. J. Mod. Phys. A 26 (2011) 4617 [arXiv:0909.4857] [INSPIRE].
R.-G. Cai and H.-Q. Zhang, Holographic superconductors with Hořava-Lifshitz black holes, Phys. Rev. D 81 (2010) 066003 [arXiv:0911.4867] [INSPIRE].
Y. Bu, Holographic superconductors with z = 2 Lifshitz scaling, Phys. Rev. D 86 (2012) 046007 [arXiv:1211.0037] [INSPIRE].
Z. Zhao, Q. Pan and J. Jing, Notes on analytical study of holographic superconductors with Lifshitz scaling in external magnetic field, Phys. Lett. B 735 (2014) 438 [arXiv:1311.6260] [INSPIRE].
A. Dector, Magnetic phenomena in holographic superconductivity with Lifshitz scaling, Nucl. Phys. B 898 (2015) 132 [arXiv:1504.00444] [INSPIRE].
S. Mahapatra, P. Phukon and T. Sarkar, Generalized superconductors and holographic optics, JHEP 01 (2014) 135 [arXiv:1305.6273].
Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [INSPIRE].
S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].
P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].
P. Hořava, General covariance in gravity at a Lifshitz point, Class. Quant. Grav. 28 (2011) 114012 [arXiv:1101.1081] [INSPIRE].
T. Griffin, P. Hořava and C.M. Melby-Thompson, Lifshitz gravity for Lifshitz holography, Phys. Rev. Lett. 110 (2013) 081602 [arXiv:1211.4872] [INSPIRE].
S. Janiszewski and A. Karch, String theory embeddings of nonrelativistic field theories and their holographic Hořava gravity duals, Phys. Rev. Lett. 110 (2013) 081601 [arXiv:1211.0010] [INSPIRE].
S. Janiszewski and A. Karch, Non-relativistic holography from Hořava gravity, JHEP 02 (2013) 123 [arXiv:1211.0005] [INSPIRE].
M. Alishahiha and H. Yavartanoo, Conformally Lifshitz solutions from Hořava-Lifshitz Gravity, Class. Quant. Grav. 31 (2014) 095008 [arXiv:1212.4190] [INSPIRE].
E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [INSPIRE].
M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].
R.C. Myers and M.C. Wapler, Transport properties of holographic defects, JHEP 12 (2008) 115 [arXiv:0811.0480] [INSPIRE].
A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [INSPIRE].
R.C. Myers, S. Sachdev and A. Singh, Holographic quantum critical transport without self-duality, Phys. Rev. D 83 (2011) 066017 [arXiv:1010.0443] [INSPIRE].
A. Ritz and J. Ward, Weyl corrections to holographic conductivity, Phys. Rev. D 79 (2009) 066003 [arXiv:0811.4195] [INSPIRE].
J.P.S. Lemos and D.W. Pang, Holographic charge transport in Lifshitz black hole backgrounds, JHEP 06 (2011) 122.
J.-P. Wu, Y. Cao, X.-M. Kuang and W.-J. Li, The 3 + 1 holographic superconductor with Weyl corrections, Phys. Lett. B 697 (2011) 153 [arXiv:1010.1929] [INSPIRE].
D. Roychowdhury, Effect of external magnetic field on holographic superconductors in presence of nonlinear corrections, Phys. Rev. D 86 (2012) 106009 [arXiv:1211.0904] [INSPIRE].
D. Roychowdhury, AdS/CFT superconductors with power Maxwell electrodynamics: reminiscent of the Meissner effect, Phys. Lett. B 718 (2013) 1089 [arXiv:1211.1612] [INSPIRE].
T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [INSPIRE].
T. Albash and C.V. Johnson, Phases of holographic superconductors in an external magnetic field, arXiv:0906.0519 [INSPIRE].
D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].
R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].
G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1602.07245
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Mansoori, S.A.H., Mirza, B., Mokhtari, A. et al. Weyl holographic superconductor in the Lifshitz black hole background. J. High Energ. Phys. 2016, 111 (2016). https://doi.org/10.1007/JHEP07(2016)111
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2016)111