Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Advertisement
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Effective field theory and electroweak baryogenesis in the singlet-extended Standard Model

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 February 2016
  • Volume 2016, article number 107, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Effective field theory and electroweak baryogenesis in the singlet-extended Standard Model
Download PDF
  • P. H. Damgaard1,
  • A. Haarr2,
  • D. O’Connell3 &
  • …
  • A. Tranberg2 
  • 698 Accesses

  • 46 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Electroweak baryogenesis is a simple and attractive candidate mechanism for generating the observed baryon asymmetry in the Universe. Its viability is sometimes investigated in terms of an effective field theory of the Standard Model involving higher dimension operators. We investigate the validity of such an effective field theory approach to the problem of identifying electroweak phase transitions strong enough for electroweak baryogenesis to be successful. We identify and discuss some pitfalls of this approach due to the modest hierarchy between mass scales of heavy degrees or freedom and the Higgs, and the possibility of dimensionful couplings violating the decoupling between light and heavy degrees of freedom.

Article PDF

Download to read the full article text

Similar content being viewed by others

Electroweak baryogenesis and the standard model effective field theory

Article Open access 18 January 2018

Electroweak baryogenesis with vector-like leptons and scalar singlets

Article Open access 02 September 2019

Electroweak baryogenesis and gravitational waves in a composite Higgs model with high dimensional fermion representations

Article Open access 09 December 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Cosmology
  • Crystal Field Theory
  • Elementary Particles, Quantum Field Theory
  • Particle Physics
  • Theoretical Nuclear Physics
  • Theoretical Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    Article  ADS  Google Scholar 

  2. V.A. Rubakov and M.E. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Phys. Usp. 39 (1996) 461 [Usp. Fiz. Nauk 166 (1996) 493] [hep-ph/9603208] [INSPIRE].

  3. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m H ≳ m W ?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M.E. Shaposhnikov, Possible Appearance of the Baryon Asymmetry of the Universe in an Electroweak Theory, JETP Lett. 44 (1986) 465 [Pisma Zh. Eksp. Teor. Fiz. 44 (1986) 364] [INSPIRE].

  5. M.E. Shaposhnikov, Structure of the High Temperature Gauge Ground State and Electroweak Production of the Baryon Asymmetry, Nucl. Phys. B 299 (1988) 797 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. G.R. Farrar and M.E. Shaposhnikov, Baryon asymmetry of the universe in the minimal Standard Model, Phys. Rev. Lett. 70 (1993) 2833 [Erratum ibid. 71 (1993) 210] [hep-ph/9305274] [INSPIRE].

  7. M.B. Gavela, P. Hernández, J. Orloff and O. Pene, Standard model CP-violation and baryon asymmetry, Mod. Phys. Lett. A 9 (1994) 795 [hep-ph/9312215] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M.B. Gavela, M. Lozano, J. Orloff and O. Pene, Standard model CP-violation and baryon asymmetry. Part 1: Zero temperature, Nucl. Phys. B 430 (1994) 345 [hep-ph/9406288] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M.B. Gavela, P. Hernández, J. Orloff, O. Pene and C. Quimbay, Standard model CP-violation and baryon asymmetry. Part 2: Finite temperature, Nucl. Phys. B 430 (1994) 382 [hep-ph/9406289] [INSPIRE].

    Article  ADS  Google Scholar 

  10. T. Brauner, O. Taanila, A. Tranberg and A. Vuorinen, Temperature Dependence of Standard Model CP-violation, Phys. Rev. Lett. 108 (2012) 041601 [arXiv:1110.6818] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G.W. Anderson and L.J. Hall, The Electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [INSPIRE].

    ADS  Google Scholar 

  12. S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].

    Article  ADS  Google Scholar 

  13. D. Curtin, P. Jaiswal and P. Meade, Excluding Electroweak Baryogenesis in the MSSM, JHEP 08 (2012) 005 [arXiv:1203.2932] [INSPIRE].

    Article  ADS  Google Scholar 

  14. V. Barger, D.J.H. Chung, A.J. Long and L.-T. Wang, Strongly First Order Phase Transitions Near an Enhanced Discrete Symmetry Point, Phys. Lett. B 710 (2012) 1 [arXiv:1112.5460] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D.J.H. Chung, A.J. Long and L.-T. Wang, 125 GeV Higgs boson and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].

    ADS  Google Scholar 

  16. D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].

    Article  ADS  Google Scholar 

  18. P.H. Damgaard, D. O’Connell, T.C. Petersen and A. Tranberg, Constraints on New Physics from Baryogenesis and Large Hadron Collider Data, Phys. Rev. Lett. 111 (2013) 221804 [arXiv:1305.4362] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J. Kozaczuk, Bubble Expansion and the Viability of Singlet-Driven Electroweak Baryogenesis, JHEP 10 (2015) 135 [arXiv:1506.04741] [INSPIRE].

    Article  ADS  Google Scholar 

  20. P. Huang, A. Joglekar, B. Li and C.E.M. Wagner, Probing the Electroweak Phase Transition at the LHC, arXiv:1512.00068 [INSPIRE].

  21. D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal Extension of the Standard Model Scalar Sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].

    ADS  Google Scholar 

  22. A. Katz and M. Perelstein, Higgs Couplings and Electroweak Phase Transition, JHEP 07 (2014) 108 [arXiv:1401.1827] [INSPIRE].

    Article  ADS  Google Scholar 

  23. D. Curtin, P. Meade and C.-T. Yu, Testing Electroweak Baryogenesis with Future Colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].

    Article  ADS  Google Scholar 

  24. K. Fuyuto, J. Hisano and E. Senaha, Toward verification of electroweak baryogenesis by electric dipole moments, arXiv:1510.04485 [INSPIRE].

  25. N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics Opportunities of a 100 TeV Proton-Proton Collider, arXiv:1511.06495 [INSPIRE].

  26. X.-m. Zhang, Operators analysis for Higgs potential and cosmological bound on Higgs mass, Phys. Rev. D 47 (1993) 3065 [hep-ph/9301277] [INSPIRE].

  27. C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].

    ADS  Google Scholar 

  28. D. Bödeker, L. Fromme, S.J. Huber and M. Seniuch, The Baryon asymmetry in the standard model with a low cut-off, JHEP 02 (2005) 026 [hep-ph/0412366] [INSPIRE].

    Article  Google Scholar 

  29. C. Delaunay, C. Grojean and J.D. Wells, Dynamics of Non-renormalizable Electroweak Symmetry Breaking, JHEP 04 (2008) 029 [arXiv:0711.2511] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. Grinstein and M. Trott, Electroweak Baryogenesis with a Pseudo-Goldstone Higgs, Phys. Rev. D 78 (2008) 075022 [arXiv:0806.1971] [INSPIRE].

    ADS  Google Scholar 

  31. F.P. Huang, P.-H. Gu, P.-F. Yin, Z.-H. Yu and X.-m. Zhang, Testing the electroweak phase transition and electroweak baryogenesis at LHC and CEPC, arXiv:1511.03969 [INSPIRE].

  32. M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs Effective Theory: Extended Higgs Sectors, JHEP 10 (2015) 036 [arXiv:1502.07352] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Ahriche, What is the criterion for a strong first order electroweak phase transition in singlet models?, Phys. Rev. D 75 (2007) 083522 [hep-ph/0701192] [INSPIRE].

    ADS  Google Scholar 

  34. M. D’Onofrio, K. Rummukainen and A. Tranberg, The Sphaleron Rate through the Electroweak Cross-over, JHEP 08 (2012) 123 [arXiv:1207.0685] [INSPIRE].

    Article  ADS  Google Scholar 

  35. K. Fuyuto and E. Senaha, Improved sphaleron decoupling condition and the Higgs coupling constants in the real singlet-extended standard model, Phys. Rev. D 90 (2014) 015015 [arXiv:1406.0433] [INSPIRE].

    ADS  Google Scholar 

  36. J.R. Espinosa, T. Konstandin and F. Riva, Strong Electroweak Phase Transitions in the Standard Model with a Singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J.M. Cline, K. Kainulainen and M. Trott, Electroweak Baryogenesis in Two Higgs Doublet Models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].

    Article  ADS  Google Scholar 

  38. P.B. Arnold and O. Espinosa, The Effective potential and first order phase transitions: Beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. D 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].

  39. J.M. Cline and P.-A. Lemieux, Electroweak phase transition in two Higgs doublet models, Phys. Rev. D 55 (1997) 3873 [hep-ph/9609240] [INSPIRE].

    ADS  Google Scholar 

  40. M.E. Carrington, The Effective potential at finite temperature in the Standard Model, Phys. Rev. D 45 (1992) 2933 [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100, Denmark

    P. H. Damgaard

  2. Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway

    A. Haarr & A. Tranberg

  3. Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, Scotland, EH9 3JZ, U.K.

    D. O’Connell

Authors
  1. P. H. Damgaard
    View author publications

    Search author on:PubMed Google Scholar

  2. A. Haarr
    View author publications

    Search author on:PubMed Google Scholar

  3. D. O’Connell
    View author publications

    Search author on:PubMed Google Scholar

  4. A. Tranberg
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to A. Tranberg.

Additional information

ArXiv ePrint: 1512.01963

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damgaard, P.H., Haarr, A., O’Connell, D. et al. Effective field theory and electroweak baryogenesis in the singlet-extended Standard Model. J. High Energ. Phys. 2016, 107 (2016). https://doi.org/10.1007/JHEP02(2016)107

Download citation

  • Received: 25 December 2015

  • Accepted: 26 January 2016

  • Published: 16 February 2016

  • DOI: https://doi.org/10.1007/JHEP02(2016)107

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Thermal Field Theory
  • Effective field theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature