Abstract
In this paper, a model inspired by Grand Unification principles featuring three generations of vector-like fermions, new Higgs doublets and a rich neutrino sector at the low scale is presented. Using the state-of-the-art Deep Learning techniques we perform the first phenomenological analysis of this model focusing on the study of new charged vector-like leptons (VLLs) and their possible signatures at CERN’s Large Hadron Collider (LHC). In our numerical analysis we consider signal events for vector-boson fusion and VLL pair production topologies, both involving a final state containing a pair of charged leptons of different flavor and two sterile neutrinos that provide a missing energy. We also consider the case of VLL single production where, in addition to a pair of sterile neutrinos, the final state contains only one charged lepton. We propose a novel method to identify missing transverse energy vectors by comparing the detector response with Monte-Carlo simulated data. All calculated observables are provided as data sets for Deep Learning analysis, where a neural network is constructed, based on results obtained via an evolutive algorithm, whose objective is to maximise either the accuracy metric or the Asimov significance for different masses of the VLL. Taking into account the effect of the three analysed topologies, we have found that the combined significance for the observation of new VLLs at the high-luminosity LHC can range from 5.7σ, for a mass of 1.25 TeV, all the way up to 28σ if the VLL mass is 200 GeV. We have also shown that by the end of the LHC Run-III a 200 GeV VLL can be excluded with a confidence of 8.8 standard deviations. The results obtained show that our model can be probed well before the end of the LHC operations and, in particular, providing important phenomenological information to constrain the energy scale at which new gauge symmetries emergent from the considered Grand Unification picture can be manifest.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
UA1 collaboration, Experimental observation of isolated large transverse energy electrons with associated missing energy at \( \sqrt{s} \) = 540 GeV, Phys. Lett. B 122 (1983) 103 [INSPIRE].
Gargamelle Neutrino collaboration, Observation of neutrino like interactions without muon or electron in the Gargamelle neutrino experiment, Phys. Lett. B 46 (1973) 138 [INSPIRE].
F.J. Hasert et al., Search for elastic νμ electron scattering, Phys. Lett. B 46 (1973) 121 [INSPIRE].
CDF collaboration, Observation of top quark production in \( p\overline{p} \) collisions, Phys. Rev. Lett. 74 (1995) 2626 [hep-ex/9503002] [INSPIRE].
R.H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science 360 (2018) 191 [arXiv:1812.04130] [INSPIRE].
D. Hanneke, S. Hoogerheide and G. Gabrielse, Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment, Phys. Rev. A 83 (2011) 052122 [arXiv:1009.4831] [INSPIRE].
Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
D. Tong, String theory, arXiv:0908.0333 [INSPIRE].
S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [Adv. Ser. Direct. High Energy Phys. 21 (2010) 1] [hep-ph/9709356] [INSPIRE].
F. Ferreira, S. Fichet and V. Sanz, On new physics searches with multidimensional differential shapes, Phys. Lett. B 778 (2018) 35 [arXiv:1702.05106] [INSPIRE].
A. Alves and F.F. Freitas, Towards recognizing the light facet of the Higgs boson, Mach. Learn. Sci. Tech. 1 (2020) 045025 [arXiv:1912.12532] [INSPIRE].
J.E. Camargo-Molina, A.P. Morais, A. Ordell, R. Pasechnik, M.O.P. Sampaio and J. Wessén, Reviving trinification models through an E6-extended supersymmetric GUT, Phys. Rev. D 95 (2017) 075031 [arXiv:1610.03642] [INSPIRE].
J.E. Camargo-Molina, A.P. Morais, A. Ordell, R. Pasechnik and J. Wessén, Scale hierarchies, symmetry breaking and particle spectra in SU(3)-family extended SUSY trinification, Phys. Rev. D 99 (2019) 035041 [arXiv:1711.05199] [INSPIRE].
A.P. Morais, R. Pasechnik and W. Porod, Grand unified origin of gauge interactions and families replication in the Standard Model, arXiv:2001.04804 [INSPIRE].
A.P. Morais, R. Pasechnik and W. Porod, Prospects for new physics from gauge left-right-colour-family grand unification hypothesis, Eur. Phys. J. C 80 (2020) 1162 [arXiv:2001.06383] [INSPIRE].
ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb−1 of \( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, PoS (EPS-HEP2019)605 (2020) [arXiv:2010.14293] [INSPIRE].
ATLAS collaboration, Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum, JHEP 12 (2019) 060 [arXiv:1908.03122] [INSPIRE].
ATLAS collaboration, Search for pair production of higgsinos in final states with at least three b-tagged jets in \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, Phys. Rev. D 98 (2018) 092002 [arXiv:1806.04030] [INSPIRE].
CMS collaboration, Search for natural and split supersymmetry in proton-proton collisions at \( \sqrt{s} \) = 13 TeV in final states with jets and missing transverse momentum, JHEP 05 (2018) 025 [arXiv:1802.02110] [INSPIRE].
CMS collaboration, Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2018) 076 [arXiv:1709.08908] [INSPIRE].
CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2018) 166 [arXiv:1709.05406] [INSPIRE].
I. Dorsner, S. Fajfer and I. Mustac, Light vector-like fermions in a minimal SU(5) setup, Phys. Rev. D 89 (2014) 115004 [arXiv:1401.6870] [INSPIRE].
S. Raby and A. Trautner, Vector-like chiral fourth family to explain muon anomalies, Phys. Rev. D 97 (2018) 095006 [arXiv:1712.09360] [INSPIRE].
M. Crispim Romao, S.F. King and G.K. Leontaris, Non-universal Z′ from fluxed GUTs, Phys. Lett. B 782 (2018) 353 [arXiv:1710.02349] [INSPIRE].
A. Karozas, G.K. Leontaris, I. Tavellaris and N.D. Vlachos, On the LHC signatures of SU(5) × U(1)′ F-theory motivated models, arXiv:2007.05936 [INSPIRE].
Z. Poh and S. Raby, Vectorlike leptons: muon g − 2 anomaly, lepton flavor violation, Higgs boson decays, and lepton nonuniversality, Phys. Rev. D 96 (2017) 015032 [arXiv:1705.07007] [INSPIRE].
E. Megias, M. Quirós and L. Salas, gμ − 2 from vector-like leptons in warped space, JHEP 05 (2017) 016 [arXiv:1701.05072] [INSPIRE].
J.E. Camargo-Molina, A.P. Morais, R. Pasechnik and J. Wessén, On a radiative origin of the Standard Model from trinification, JHEP 09 (2016) 129 [arXiv:1606.03492] [INSPIRE].
A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens and O. Ruchayskiy, Sterile neutrino Dark Matter, Prog. Part. Nucl. Phys. 104 (2019) 1 [arXiv:1807.07938] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
F. Staub, SARAH 4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
S. Höche et al., Matching parton showers and matrix elements, in HERA and the LHC: a workshop on the implications of HERA for LHC physics, CERN-2005-014, (2005), pg. 288 [hep-ph/0602031] [INSPIRE].
N.F. Bell, M.J. Dolan, L.S. Friedrich, M.J. Ramsey-Musolf and R.R. Volkas, Electroweak baryogenesis with vector-like leptons and scalar singlets, JHEP 09 (2019) 012 [arXiv:1903.11255] [INSPIRE].
A. Falkowski, D.M. Straub and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, JHEP 05 (2014) 092 [arXiv:1312.5329] [INSPIRE].
I. Garcia Garcia, K. Howe and J. March-Russell, Natural Scherk-Schwarz theories of the weak scale, JHEP 12 (2015) 005 [arXiv:1510.07045] [INSPIRE].
N. Kumar and S.P. Martin, Vectorlike leptons at the Large Hadron Collider, Phys. Rev. D 92 (2015) 115018 [arXiv:1510.03456] [INSPIRE].
R. Dermisek and A. Raval, Explanation of the muon g − 2 anomaly with vectorlike leptons and its implications for Higgs decays, Phys. Rev. D 88 (2013) 013017 [arXiv:1305.3522] [INSPIRE].
R. Dermisek, J.P. Hall, E. Lunghi and S. Shin, Limits on vector-like leptons from searches for anomalous production of multi-lepton events, JHEP 12 (2014) 013 [arXiv:1408.3123] [INSPIRE].
B. Holdom and M. Ratzlaff, Neglected heavy leptons at the LHC, Phys. Rev. D 90 (2014) 013015 [arXiv:1405.4573] [INSPIRE].
S.A.R. Ellis, R.M. Godbole, S. Gopalakrishna and J.D. Wells, Survey of vector-like fermion extensions of the Standard Model and their phenomenological implications, JHEP 09 (2014) 130 [arXiv:1404.4398] [INSPIRE].
B. Bhattacherjee, P. Byakti, A. Kushwaha and S.K. Vempati, Unification with vector-like fermions and signals at LHC, JHEP 05 (2018) 090 [arXiv:1702.06417] [INSPIRE].
J. Kawamura, S. Raby and A. Trautner, Complete vector-like fourth family with U(1)′: a global analysis, Phys. Rev. D 101 (2020) 035026 [arXiv:1911.11075] [INSPIRE].
P.N. Bhattiprolu and S.P. Martin, Prospects for vector-like leptons at future proton-proton colliders, Phys. Rev. D 100 (2019) 015033 [arXiv:1905.00498] [INSPIRE].
K. Kowalska and D. Kumar, Road map through the desert: unification with vector-like fermions, JHEP 12 (2019) 094 [arXiv:1910.00847] [INSPIRE].
K. Fujikawa, A vector-like extension of the Standard Model, Prog. Theor. Phys. 92 (1994) 1149 [hep-ph/9411258] [INSPIRE].
A. Crivellin, F. Kirk, C.A. Manzari and M. Montull, Global electroweak fit and vector-like leptons in light of the Cabibbo angle anomaly, arXiv:2008.01113 [INSPIRE].
CMS collaboration, Search for vector-like leptons in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 100 (2019) 052003 [arXiv:1905.10853] [INSPIRE].
S. Bhattacharya, P. Ghosh, N. Sahoo and N. Sahu, Mini review on vector-like leptonic dark matter, neutrino mass, and collider signatures, Front. in Phys. 7 (2019) 80 [arXiv:1812.06505] [INSPIRE].
D. Cogollo, F.F. Freitas, C.A.S. Pires, Y.M. Oviedo-Torres and P. Vasconcelos, Deep learnig analysis of the inverse seesaw in a 3-3-1 model at the LHC, Phys. Lett. B 811 (2020) 135931 [arXiv:2008.03409] [INSPIRE].
F.F. Freitas, C.K. Khosa and V. Sanz, Exploring the Standard Model EFT in VH production with machine learning, Phys. Rev. D 100 (2019) 035040 [arXiv:1902.05803] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
Computing resources webpage, http://gravitation.web.ua.pt/computing.
F. Chollet, Keras, https://github.com/fchollet/keras, (2015).
M. Abadi et al., TensorFlow: large-scale machine learning on heterogeneous distributed systems, arXiv:1603.04467 [INSPIRE].
A. Elwood and D. Krücker, Direct optimisation of the discovery significance when training neural networks to search for new physics in particle colliders, arXiv:1806.00322 [INSPIRE].
C. Darwin, On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life, John Murray, London, U.K. (1859).
N.V. Chawla, K.W. Bowyer, L.O. Hall and W.P. Kegelmeyer, SMOTE: Synthetic Minority Over-sampling Technique, J. Artif. Intel. Res. 16 (2002) 321 [arXiv:1106.1813].
M. D’Onofrio, Prospects for LHC run 3 and HL-LHC, Fermilab seminar, U.S.A., October 2019.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2010.01307
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Freitas, F.F., Gonçalves, J., Morais, A.P. et al. Phenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider. J. High Energ. Phys. 2021, 76 (2021). https://doi.org/10.1007/JHEP01(2021)076
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2021)076