Nothing Special   »   [go: up one dir, main page]

Navigation überspringen
Universitätsbibliothek Heidelberg
Verfasst von:Lee, Seokho
 Shin, Hyejin
 Billor, Nedret
Titel:MM-type smoothing spline estimators for principal functions
Jahr:2013
Fussnoten:ObjectType-Article-2 ; ObjectType-Feature-1 ; SourceType-Scholarly Journals-1 ; content type line 23
Inhalt:We propose a robust method for estimating principal functions based on MM estimation. Specifically, we formulate functional principal component analysis into alternating penalized MM-regression with a bounded loss function. The resulting principal functions are given as MM-type smoothing spline estimators. Using the properties of a natural cubic spline, we develop a fast computation algorithm even for long and dense functional data. The proposed method is efficient in that the maximal information from whole observed curve is retained since it partly downweighs abnormally observed individual measurements in a single curve rather than removing or downweighing a whole curve. We demonstrate the performance of the proposed method on simulated and real data and compare it with the conventional functional principal component analysis and other robust functional principal component analysis techniques.
ISSN:0167-9473
Titel Quelle:Computational statistics & data analysis
Jahr Quelle:2013
Band/Heft Quelle:66, S. 89-100
DOI:doi:10.1016/j.csda.2013.03.022
URL:http://www.ub.uni-heidelberg.de/cgi-bin/edok?dok=https%3A%2F%2Fsearch.proquest.com%2Fdocview%2F1506398996
 DOI: https://doi.org/10.1016/j.csda.2013.03.022
Sprache:English
Sach-SW:Computation
Verknüpfungen:→ Sammelwerk


zum Seitenanfang