Verfasst von: | Juschenko, Kate [VerfasserIn] |
Titel: | Amenability of discrete groups by examples |
Verf.angabe: | Kate Juschenko |
Verlagsort: | Providence, Rhode Island |
Verlag: | American Mathematical Society |
E-Jahr: | 2022 |
Jahr: | [2022] |
Umfang: | 1 Online-Ressource (xi, 165 Seiten) |
Illustrationen: | Illustrationen |
Gesamttitel/Reihe: | Mathematical surveys and monographs ; volume 266 |
Fussnoten: | Description based on publisher supplied metadata and other sources |
ISBN: | 978-1-4704-7109-5 |
Abstract: | The main topic of the book is amenable groups, i.e., groups on which there exist invariant finitely additive measures. It was discovered that the existence or non-existence of amenability is responsible for many interesting phenomena such as, e.g., the Banach-Tarski Paradox about breaking a sphere into two spheres of the same radius. Since then, amenability has been actively studied and a number of different approaches resulted in many examples of amenable and non-amenable groups.In the book, the author puts together main approaches to study amenability. A novel feature of the book is that the exposition of the material starts with examples which introduce a method rather than illustrating it. This allows the reader to quickly move on to meaningful material without learning and remembering a lot of additional definitions and preparatory results; those are presented after analyzing the main examples. The techniques that are used for proving amenability in this book are mainly a combination of analytic and probabilistic tools with geometric group theory. |
URL: | Aggregator: https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=7015908 |
Schlagwörter: | (s)Diskrete amenable Gruppe / (s)Amenabilitätstheorie / (s)Banach-Tarskisches Paradoxon / (s)Cantor-Raum / (s)Topologische volle Gruppe |
Datenträger: | Online-Ressource |
Sprache: | eng |
Bibliogr. Hinweis: | Erscheint auch als : Druck-Ausgabe: Juschenko, Kate, 1984 - : Amenability of discrete groups by examples. - Providence, Rhode Island : American Mathematical Society, 2022. - xi, 165 Seiten |
Sach-SW: | Electronic books |
K10plus-PPN: | 1808313364 |
Verknüpfungen: | → Übergeordnete Aufnahme |
|
|
| |
Lokale URL UB: | Zum Volltext |
© Universitätsbibliothek Heidelberg