Nothing Special   »   [go: up one dir, main page]




Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

fastFM: A Library for Factorization Machines

Immanuel Bayer; 17(184):1−5, 2016.

Abstract

Factorization Machines (FM) are currently only used in a narrow range of applications and are not yet part of the standard machine learning toolbox, despite their great success in collaborative filtering and click-through rate prediction. However, Factorization Machines are a general model to deal with sparse and high dimensional features. Our Factorization Machine implementation (fastFM) provides easy access to many solvers and supports regression, classification and ranking tasks. Such an implementation simplifies the use of FM for a wide range of applications. Therefore, our implementation has the potential to improve understanding of the FM model and drive new development.

[abs][pdf][bib]        [code] [webpage]
© JMLR 2016. (edit, beta)

Mastodon