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Abstract. Keeping confidential who sends which messages, in a world where 
any physical transmission can be traced to its origin, seems impossible. The solu
tion presented here is unconditionally or cryptographically secure, depending on 
whether it is based on one-time-use keys or on public keys, respectively. It can be 
adapted to address efficiently a wide variety of practical considerations. 
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Introduction 

Three cryptographers are sitting down to dinner at their favorite three-star res
taurant. Their waiter informs them that arrangements have been made with the 
ma1tre d'hotel for the bill to be paid anonymously. One of the cryptographers might 
be paying for the dinner, or it might have been NSA (U.S. National Security Agency). 
The three cryptographers respect each other's right to make an anonymous pay
ment, but they wonder if NSA is paying. They resolve their uncertainty fairly by 
carrying out the following protocol: 

Each cryptographer flips an unbiased coin behind his menu, between him and 
the cryptographer on his right, so that only the two of them can see the outcome. 
Each cryptographer then states aloud whether the two coins he can see-the one 
he flipped and the one his left-hand neighbor flipped-fell on the same side or on 
different sides. If one of the cryptographers is the payer, he states the opposite of 
what he sees. An odd number of differences uttered at the table indicates that a 
cryptographer is paying; an even number indicates that NSA is paying (assuming 
that the dinner was paid for only once). Yet if a cryptographer is paying, neither of 
the other two learns anything from the utterances about which cryptographer it is. 

To see why the protocol is unconditionally secure if carried out faithfully, consider 
the dilemma of a cryptographer who is not the payer and wishes to find out which 
cryptographer is. (IfNSA pays, there is no anonymity problem.) There are two cases. 
In case (1) the two coins he sees are the same, one of the other cryptographers said 
"different," and the other one said "same." If the hidden outcome was the same as 
the two outcomes he sees, the cryptographer who said "different" is the payer; if the 
outcome was different, the one who said "same" is the payer. But since the hidden 
coin is fair, both possibilities are equally likely. In case (2) the coins he sees are 
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different; if both other cryptographers said "different," then the payer is closest to 
the coin that is the same as the hidden coin; if both said "same," then the payer is 
closest to the coin that differs from the hidden coin. Thus, in each subcase, a 
non paying cryptographer learns nothing about which of the other two is paying. 

The cryptographers become intrigued with the ability to make messages public 
untraceably. They devise a way to do this at the table for a statement of arbitrary 
length: the basic protocol is repeated over and over; when one cryptographer wishes 
to make a message public, he merely begins inverting his statements in those rounds 
corresponding to 1 's in a binary coded version of his message. If he notices that his 
message would collide with some other message, he may for example wait a number 
of rounds chosen at random from a suitable distribution before trying to transmit 
again. 

1. Generalizing the Approach 

During dinner, the cryptographers also consider how any number of participants 
greater than one can carry out a version of the protocol. (With two participants, 
only nonparticipant listeners are unable to distinguish between the two potential 
senders.) Each participant has a secret key bit in common with, say, every other 
participant. Each participant outputs the sum, modulo two, of all the key bits he 
shares, and if he wishes to transmit, he inverts his output. If no participant transmits, 
the modulo two sum of the outputs must be zero, since every key bit enters exactly 
twice; if one participant transmits, the sum must be one. (In fact, any even number 
of transmitting participants yields zero, and any odd number yields one.) For j 
rounds, each participant could have a j-bit key in common with every other 
participant, and the ith bit of each such key would be used only in the ith round. 
Detected collision of messages leads to attempted retransmission as described 
above; undetected collision results only from an odd number of synchronized 
identical message segments. (Generalization to fields other than GF(2) is possible, 
but seems to offer little practical advantage.) 

Other generalizations are also considered during dinner. The underlying as
sumptions are first made explicit, including modeling key-sharing arrangements as 
graphs. Next, the model is illustrated with some simple examples. The potential for 
cooperations of participants to violate the security of others is then looked at. 
Finally, a proof of security based on systems of linear equations is given. 

1.1. Model 

Each participant is assumed to have two kinds of secret: (a) the keys shared with 
other participants for each round; and (b) the inversion used in each round (i.e., a 1 
if the participant inverts in that round and a 0 if not). Some or all of a participant's 
secrets may be given to other participants in various forms of collusion, discussion 
of which is postponed until Section 1.3. (For simplicity in exposition, the possibility 
of secrets being stolen is ignored throughout.) 

The remaining information about the system may be described as: (a) who shares 
keys with whom; and (b) what each participant outputs during each round (the 
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modulo two sum of that participant's keys and inversion). This information need 
not be secret to ensure untraceability. If it is publicly known and agreed, it allows 
various extensions discussed in Sections 2.5 and 2.6. The sum of all the outputs will, 
of course, usually become known to all participants. 

In the terminology of graphs, each participant corresponds to a vertex and each 
key corresponds to an edge. An edge is incident on the vertices corresponding to 
the pair of participants that shares the corresponding key. From here on, the graph 
and dinner-table terminologies will be used interchangeably. Also, without loss of 
generality, it will be assumed that the graph is connected (i.e., that a path exists 
between every pair of vertices), since each connected component (i.e., each maximal 
connected subgraph) could be considered a separate untraceable-sender system. 

An anonymity set seen by a set of keys is the set of vertices in a connected 
component of the graph formed from the original graph by removing the edges 
concerned. Thus a set of keys sees one anonymity set for each connected partition 
induced by removing the keys. The main theorem of Section 1.4 is essentially that 
those having only the public information and a set of keys seeing some anonymity 
set can learn nothing about the members of that anonymity set except the overall 
parity of their inversions. Thus, for example, any two participants connected by at 
least one chain of keys unknown to an observer are both in the same anonymity 
set seen by the observer's keys, and the observer gains nothing that would help 
distinguish between their messages. 

1.2. Some Examples 

A few simple consequences of the above model may be illustrative. The anonymity 
set seen by the empty set (i.e., by a nonparticipant observer) is the set of all vertices, 
since the graph is assumed connected and remains so after zero edges are removed. 
Also, the anonymity sets seen by the full set of edges are all singleton sets, since each 
vertex's inversion is just the sum of its output and the corresponding key bits. 

If all other participants cooperate fully against one, of course no protocol can 
keep that singleton's messages untraceable, since untraceability exists only among 
a set of possible actors, and ifthe set has only one member, its messages are traceable. 
For similar reasons, if a participant believes that some subset of other participants 
will fully cooperate against him, there is no need for him to have keys in common 
with them. 

A biconnected graph (i.e., a graph with at least two vertex-disjoint paths between 
every pair of vertices) has no cut-vertices (i.e., a single vertex whose removal 
partitions the graph into disjoint subgraphs). In such a graph, the set of edges 
incident on a vertex v sees (apart from v) one anonymity set containing all other 
vertices, since there is a path not containing v between every pair of vertices, and 
thus they form a connected subgraph excluding v; each participant acting alone 
learns nothing about the contribution of other participants. 

1.3. Collusion of Participants 

Some participants may cooperate by pooling their keys in efforts to trace the 
messages of others; such cooperation will be called collusion. For simplicity, the 
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possibilities for multiple collusions or for pooling of information other than full 
edges will be ignored. Colluders who lie to each other are only touched on briefly, 
in Section 2.6. 

Consider collusion in a complete graph. A vertex is only seen as a singleton 
anonymity set by the collection of all edges incident on it; all other participants 
must supply the key they share with a participant in order to determine that 
participant's inversions. But since a collusion of all but one participant can always 
trace that participant merely by pooling its members' inversions as already men
tioned, it gains nothing more by pooling its keys. The nonsingleton anonymity set 
seen by all edges incident on a colluding set of vertices in a complete graph is the 
set of all other vertices; again, a collusion yields nothing more from pooling all its 
keys than from pooling all its inversions. 

Now consider noncomplete graphs. A full collusion is a subset of participants 
pooling all of their keys. The pooled keys see each colluder as a singleton anonymity 
set; the colluders completely sacrifice the untraceability of their own messages. If a 
full collusion includes a cut-set of vertices (i.e., one whose removal partitions the 
graph), the collusion becomes nontrivial because it can learn something about the 
origin of messages originating outside the collusion; the noncolluding vertices are 
partitioned into disjoint subgraphs, which are the anonymity sets seen by the pooled 
keys. 

Members of a partial collusion pool some but not all of their keys. Unlike the 
members of a full collusion, each member of a partial collusion in general has a 
different set of keys. For it to be nontrivial, a partial collusion's pooled keys must 
include the bridges or separating edges of a segregation or splitting of the graph 
(i.e., those edges whose removal would partition the graph). Settings are easily 
constructed in which the pooled keys see anonymity sets that partition the graph 
and yet leave each colluder in a nonsingleton partition seen by any other participant. 
Thus, colluders can join a collusion without having to make themselves completely 
traceable to the collusion's other members. 

1.4. Proof of Security 

Consider, without loss of generality, a single round in which say some full collusion 
knows some set of keys. Remove the edges known to the collusion from the 
key-sharing graph and consider any particular connected component C of the 
remaining graph. The vertices of C thus form an anonymity set seen by the pooled 
keys. 

Informally, what remains to be shown is that the only thing the collusion learns 
about the members of C is the parity sum of their inversions. This is intuitively 
apparent, since the inversions of the members of C are each in effect hidden from 
the collusion by one or more unknown key bits, and only the parity of the sum of 
these key bits is known (to be zero). Thus the inversions are hidden by a one-time 
pad, and only their parity is revealed, because only the parity of the pad is known. 

The setting is formalized as follows: the connected component C is comprised of 
m vertices and n edges. The incidence matrix M of C is defined as usual, with the 
vertices labeling the rows and the edges labeling the columns. Let K, I, and A be 
stochastic variables defined on GF(2t, GF(2r, and GF(2r, respectively, such that 



The Dining Cryptographers Problem 69 

K is uniformly distributed over GF(2t, K and I are mutually independent, and 
A = (MK) E9 I. In terms of the protocol, K comprises the keys corresponding to the 
edges, I consists of the inversions corresponding to the vertices, and A is formed by 
the outputs of the vertices. Notice that the parity of A (i.e., the modulo two sum of 
its components) is always equal to the parity of I, since the columns ofM each have 
zero parity. The desired result is essentially that A reveals no more information 
about I than the parity of I. More formally: 

Theorem. Let a be in GF(2t. For each i in GF(2)", which is assumed by I with 
nonzero probability and which has the same parity as a, the conditional probability 
that A =a given that I = i is 21-m. Hence, the conditional probability that I = i given 
that A = a is the a priori probability that I = i. 

Proof. Let i E GF(2t have the same parity as a. Consider the system of linear 
equations (MK) E9 i = a, in k E GF(2)". Since the columns of M each have even 
parity, as mentioned above, its rows are linearly dependent over GF(2r. But as a 
consequence of the connectedness of the graph, every proper subset of rows of M 
is linearly independent. Thus, the rank of M is m - 1, and so each vector with zero 
parity can be written as a linear combination of the columns ofM. This implies that 
the system is solvable because i E9 a has even parity. Since the set of n column vectors 
of M has rank m - 1, the system has exactly 2n-m+i solutions. 

Together with the fact that K and I are mutually independent and that K is 
uniformly distributed, the theorem follows easily. D 

2. Some Practical Considerations 

After dinner, while discussing how they can continue to make untraceable state
ments from this respective homes, the cryptographers take up a variety of other 
topics. In particular, they consider different ways to establish the needed keys; 
debate adapting the approach to various kinds of communication networks; 
examine the traditional problems of secrecy and authentication in the context of a 
system that can provide essentially optimal untraceability; address denial of service 
caused by malicious and devious participants; and propose means to discourage 
socially undesirable messages from being sent. 

2.1. Establishing Keys 

One way to provide the keys needed for longer messages is for one member of each 
pair to toss many coins in advance. Two identical copies of the resulting bits are 
made, say each on a separate optical disk. Supplying one such disk (which today 
can hold on the order of 1010 bits) to a partner provides enough key bits to allow 
people to type messages at full speed for years. If participants are not transmitting 
all the time, the keys can be made to last even longer by using a substantially slower 
rate when no message is being sent; the full rate would be invoked automatically 
only when a 1 bit indicated the beginning of a message. (This can also reduce the 
bandwidth requirements discussed in Section 2.2.) 
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Another possibility is for a pair to establish a short key and use a cryptographic 
pseudorandom-sequence generator to expand it as needed. Of course this system 
might be broken if the generator were broken. Cryptanalysis may be made more 
difficult, however, by lack of access to the output of individual generators. Even 
when the cryptographers do not exchange keys at dinner, they can safely do so later 
using a public-key distribution system (first proposed by [4] and [3]). 

2.2 Underlying Communication Techniques 

A variety of underlying communication networks can be used, and their topology 
need not be related to that of the key-sharing graph. 

Communication systems based on simple cycles, called rings, are common in local 
area networks. In a typical ring, each node :receives each bit and passes it round
robin to the next node. This technology is readily adapted to the present protocols. 
Consider a single-bit message like the "I paid" message originally sent at the dinner 
table. Each participant exclusive-or's the bit he receives with his own output before 
forwarding it to the next participant. When the bit has traveled full circle, it is the 
exclusive-or sum of all the participants' outputs, which is the desired result of the 
protocol. To provide these messages to all participants, each bit is sent ar,?und a 
second time by the participant at the end of the loop. 

Such an adapted ring requires, on average, a fourfold increase in bandwidth over 
the obvious traceable protocols in which messages travel only halfway around on 
average before being taken off the ring by their recipients. Rings differ from the 
dinner table in that several bit-transmission delays may be required before all the 
outputs of a particular round are known to all participants; collisions are detected 
only after such delays. 

Efficient use of many other practical communication techniques requires par
ticipants to group output bits into blocks. For example, in high-capacity broadcast 
systems, such as those based on coaxial cable, surface radio, or satellites, more 
efficient use of channel capacity is obtained by grouping a participant's contribution 
into a block about the size of a single message (see, e.g., [5]). Use of such com
munication techniques could require an increase in bandwidth on the order of the 
number of participants. 

In a network with one message per block, the well-known contention protocols 
can be used: time is divided evenly into frames; a participant transmits a block 
during one frame; if the block was garbled by collision (presumably with another 
transmitted block), the participant waits a number of frames chosen at random from 
some distribution before attempting to retransmit; the participants' waiting inter
vals may be adjusted on the basis of the collision rate and possibly of other heuristics 
[5]. 

In a network with many messages per block, a first block may be used by various 
anonymous senders to request a "slot reservation" in a second block. A simple 
scheme would be for each anonymous sender to invert one randomly selected bit 
in the first block for each slot they wish to reserve in the second block. After the 
result of the first block becomes known, the participant who caused the ith 1 bit in 
the first block sends in the ith slot of the second block. 
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2.3. Example Key-Sharing Graphs 

In large systems it may be desirable to use fewer than the m(m - 1)/2 keys required 
by a complete graph. If the graph is merely a cycle, then individuals acting alone 
learn nothing, but any two colluders can partition the graph, perhaps fully com
promising a participant immediately between them. Such a topology might never
theless be adequate in an application in which nearby participants are not likely to 
collude against one another. 

A different topology assumes the existence of a subset of participants who each 
participant believes are sufficiently unlikely to collude, such as participants with 
conflicting interests. This subset constitutes a fully connected subgraph, and the 
other participants each share a key with every member of it. Every participant is 
then untraceable among all the others, unless all members of the completely con
nected subset cooperate. (Such a situation is mentioned again in Section 3.) 

If many people wish to participate in an untraceable communication system, 
hierarchical arrangements may offer further economy of keys. Consider an example 
in which a representative from each local fully connected subgraph is also a member 
of the fully connected central subgraph. The nonrepresentative members of a local 
subgraph provide the sum of their outputs to their representative. Representatives 
would then add their own contributions before providing the sum to the central 
subgraph. Only a local subgraph's representative, or a collusion of representatives 
from all other local subgraphs, can recognize messages as coming from the local 
subgraph. A collusion comprising the representative and all but one nonrepresen
tative member of a local subgraph is needed for messages to be recognized as coming 
from the remaining member. 

2.4. Secrecy and Authentication 

What about the usual cryptologic problems of secrecy and authentication? 
A cryptographer can ensure the secrecy of an anonymous message by encrypting 

the message with the intended recipient's public key. (The message should include 
a hundred or so random bits to foil attempts to confirm a guess at its content [1].) 
The sender can even keep the identity of the intended recipient secret by leaving it 
to each recipient to try to decrypt every message. Alternatively, a prearranged prefix 
could be attached to each message so that the recipient need only decrypt messages 
with recognized prefixes. To keep even the multiplicity of a prefix's use from 
being revealed, a different prefix might be used each time. New prefixes could be 
agreed in advance, generated cryptographically as needed, or supplied in earlier 
messages. 

Authentication is also quite useful in systems without identification. Even though 
the messages are untraceable, they might still bear digital signatures corresponding 
to public-key "digital pseudonyms" [1]; only the untraceable owner of such a 
pseudonym would be able to sign subsequent messages with it. Secure payment 
protocols have elsewhere been proposed in which the puyer and/or the payee might 
be untraceable [2]. Other protocols have been proposed that allow individuals 
known only by pseudonyms to transfer securely information about themselves 
between organizations [2]. All these systems require solutions to the sender untrace-
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ability problem, such as the solution presented here, if they are to protect the 
unlinkability of pseudonyms used to conduct transactions from home. 

2.5. Disruption 

Another question is how to stop participants who, accidentally or even inten
tionally, disrupt the system by preventing others from sending messages. In a sense, 
this problem has no solution, since any participant can send messages continuously, 
thereby clogging the channel. But nondisupters can ultimately stop disruption in a 
system meeting the following requirements: (1) the key-sharing graph is publicly 
agreed on; (2) each participant's outputs are publicly agreed on in such a way that 
participants cannot change their output for a round on the basis of other partici
pants' outputs for that round; and (3) some rounds contain inversions that would 
not compromise the untraceability of any nondisrupter. 

The first requirement has already been mentioned in Section 1.1, where it was 
said that this information need not be secret; now it is required that this information 
actually be made known to all participants and that the participants agree on it. 

The second requirement is in part that disrupters be unable (at least with some 
significant probability) to change their output after hearing other participants' 
outputs. Some actual channels would automatically ensure this, such as broadcast 
systems in which all broadcasts are made simultaneously on different frequencies. 
The remainder of the second requirement, that the outputs be publicly agreed on, 
might also be met by broadcasting. Having only channels that do not provide it 
automatically, an effective way to meet the full second requirement would be for 
participants to "commit" to their outputs before making them. One way to do this 
is for participants to make public and agree on some (possibly compressing and 
hierarchical, see Section 2.6) one-way function of their outputs, before the outputs 
are made public. 

The third requirement is that at least some rounds can be contested (i.e., that all 
inversions can be made public) without compromising the untraceability of non
disrupting senders. The feasibility of this will be demonstrated here by a simple 
example protocol based on the slot reservation technique already described in 
Section 2.2. 

Suppose that each participant is always to make a single reservation in each 
reserving block, whether or not he actually intends to send a message. (Notice that, 
because of the "birthday paradox," the number of bits per reserving block must be 
quadratic in the number of participants.) A disrupted reserving block would then 
with very high probability have Hamming weight unequal to the number of partici
pants. All bits of such a disrupted reserving block could be contested without loss 
of untraceability for nondisrupters. 

The reserved blocks can also be made to have such safely contestable bits if 
participants send trap messages. To lay a trap, a participant first chooses the index 
of a bit in some reserving block, a random message, and a secret key. Then the 
trapper makes public an encryption, using the secret key, of both the bit index and 
the random message. Later, the trapper reserves by inverting in the round corre
sponding to the bit index, and sends the random message in the resulting reserved 
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slot. If a disrupter is unlucky enough to have damaged a trap message, then release 
of the secret key by the trapper would cause at least one bit of the reserved slot to 
be contested. 

With the three requirements satisfied, it remains to be shown how if enough 
disrupted rounds are contested, the disrupters will be excluded from the network. 

Consider first the case of a single participant's mail computer disrupting the 
network. If it tells the truth about contested key bits it shares (or lies about an even 
number of bits), the disrupter implicates itself, because its contribution to the sum 
is unequal to the sum of these bits (apart from any allowed inversion). If, on the 
other hand, the single disrupter lies about some odd number of shared bits, the 
values it claims will differ from those claimed for the same shared bits by the other 
participants sharing them. The disrupter thereby casts suspicion on all participants, 
including itself, that share the disputed bits. (It may be difficult for a disrupter to 
cast substantial suspicion on a large set of participants, since all the disputed bits 
will be in common with the disrupter.) Notice, however, that participants who have 
been falsely accused will know that they have been-and by whom-and should 
at least refuse to share bits with the disrupter in the future. 

Even with colluding multiple disrupters, at least one inversion must be revealed 
as illegitimate or at least one key bit disputed, since the parity of the outputs does 
not correspond to the number of!egitimate inversions. The result of such a contested 
round will be the removal of at least one edge or at least one vertex from the agreed 
graph. Thus, if every disruptive action has a nonzero probability of being contested, 
only a bounded amount of disruption is possible before the disrupters share no keys 
with anyone in the network, or before they are revealed, and are in either case 
excluded from the network. 

The extension presented next can demonstrate the true value of disputed bits, 
and hence allows direct incrimination of disrupters. 

2.6. Tracing by Consent 

Antisocial use of a network can be deterred if the cooperation of most participants 
makes it possible, albeit expensive, to trace any message. If, for example, a threaten
ing message is sent, a court might order all participants to reveal their shared key 
bits for a round of the message. The sender of the offending message might try to 
spread the blame, however, by lying about some odd number of shared bits. Digital 
signatures can be used to stop such blame-spreading altogether. In principle, each 
party sharing a key could insist on a signature, made by the other party sharing, 
for the value of each shared bit. 

Such signatures would allow for contested rounds to be fully resolved, for 
accused senders to exonerate themselves, and even for colluders to convince each 
other that they are pooling true keys. Unfortunately, cooperating participants able 
to trace a message to its sender could convince others of the message's origin by 
revealing the sender's own signatures. A variation can prevent a participant's 
signatures from being used against him in this way: instead of each member of a 
pair of participants signing the same shared key bit, each signs a separate bit, such 
that the sum of the signed bits is the actual shared key bit. Signatures on such "split" 
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key bits would still be useful in resolving contested rounds, since if one contester of 
a bit shows a signature made by the second contester, then the second would have 
to reveal the corresponding signature made by the first or be thought to be a 
disrupter. 

In many applications it may be impractical to obtain a separate signature on 
every key bit or split key bit. The overhead involved could be greatly reduced, 
however, by digitally signing cryptographic compressions of large numbers of key 
bits. This might of course require that a whole block of key bits be exposed in 
showing a signature, but such blocks could be padded with cryptographically 
generated pseudorandom (or truly random) bits, to allow the exposure of fewer bits 
per signature. The number of bits and amount of time required to verify a signature 
for a single bit can be reduced further by using a rooted tree in which each node is 
the one-way compression function of all its direct descendants; only a digital 
signature of each participant's root need be agreed on before use of the keys 
comprising the leaves. 

3. Relation to Previous Work 

There is another multiparty-secure sender-untraceability protocol in the literature 
[1]. To facilitate comparison, it will be called a mix-net here, while the protocol of 
the present work is called a de-net. The mix-net approach relies on the security of 
a true public-key system (and possibly also of a conventional cryptosystem), and is 
thus at best computationally secure; the de-net approach can use unconditional 
secrecy channels to provide an unconditionally secure untraceable-sender system, 
or can use public-key distribution to provide a computationally secure system (as 
described in Section 2.1 ). 

Under some trust assumptions and channel limitations, however, mix-nets can 
operate where de-nets cannot. Suppose that a subset of participants is trusted by 
every other participant not to collude and that the bandwidth of at least some 
participants' channels to the trusted subset is incapable of handling the total 
message traffic. Then mix-nets may operate quite satisfactorily, but de-nets will be 
unable to protect fully each participant's untraceability. Mix-nets can also provide 
recipient untraceability in this communication environment, even though there is 
insufficient bandwidth for use of the broadcast approach (mentioned in Section 2.4). 

If optimal protection against collusion is to be provided and the crypto-security 
of mix-nets is acceptable, a choice between mix-nets and de-nets may depend on 
the nature of the traffic. With a mail-like system that requires only periodic de
liveries, and where the average number of messages per interval is relatively large, 
mix-nets may be suitable. When messages must be delivered continually and there 
is no time for batching large numbers of them, de-nets appear preferable. 

4. Conclusion 

This solution to the dining cryptographers problem demonstrates that uncondi
tional secrecy channels can be used to construct an unconditional sender-untrace
ability channel. It also shows that a public-key distribution system can be used to 
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construct a computationally secure sender-untraceability channel. The approach 
appears able to satisfy a wide range of practical concerns. 
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