Энергоэффективность и энергосбережение: ядерные источники для космоса
Версия для печати:
Энергоэффективность и энергосбережение: ядерные источники для космоса (PDF, 1.60 Мб)
Ритэг на америции-241 для полетов к ближайшим звездам
Практически все знания об удаленных от Солнца планетах люди получили благодаря использованию плутония-238. Совсем небольшого количества этого высокорадиоактивного вещества хватает для обеспечения космических зондов энергией на целые десятилетия. Однако его наработанные запасы почти исчерпаны, производство дорого и приводит к образованию большого количества радиоактивных отходов. Решением «плутониевой проблемы» может стать применение америция-241 (Am-241) в радиоизотопных термоэлектрических генераторах (РИТЭГ). В отличие от ядерных реакторов, использующих управляемую цепную реакцию, в этих устройствах тепло распада ядер преобразуется в электрическую энергию с помощью термоэлектрогенератора.
В качестве топлива для космических зондов америций-241—более доступный материал. РИТЭГ на его основе имеют долгий жизненный цикл: период полураспада Am-241 составляет 432 года (у Pu-238 — 88 лет), что позволяет осуществлять сверхдлительные автономные космические миссии по исследованию ближайших звезд. В то же время энергетическая плотность данного изотопа в 4 раза меньше, чем у плутония, соответственно, для достижения необходимой мощности топлива нужно больше.
Более стабильное энергообеспечение космических аппаратов. За 15-20 лет (средняя продолжительность космических миссий по исследованию окраин Солнечной системы) мощность РИТЭГ на америции сократится всего на 3-4%, тогда как система на плутонии потеряет в мощности от 15%. Возможность исследований дальнего космоса, включая автономные полеты космических зондов (длительностью от десятков до сотен лет) к окраинам облака Оорта и к нескольким наиболее близким звездам. Снижение остроты проблемы радиоактивных отходов. Повышение экономической эффективности космических программ. |
17 кг составляют научные запасы плутония-238 в США. Этого количества может хватить на 4 генератора, один из которых уже зарезервирован для марсохода в рамках миссии «Марс-2020».
на 30–40 % возрастет стоимость РИТЭГ при использовании в качестве источника энергии изотопа америция-241 вместо плутония-238.
|
Исчерпание наработанных запасов и высокая стоимость производства плутония-238 (несколько миллионов долларов за килограмм). Растущий спрос на эффективные и доступные решения по энергообеспечению космических миссий. Сложность и продолжительность производства. |
|
технологии в России «Паритет» — уровень российских исследований не уступает мировому.
|
Ядерный космический источник энергии мегаваттного класса
Для отправки экспедиций на Марс, промышленного производства в космосе, очистки орбит от техногенного мусора, защиты от попадания астероидов и комет на Землю — в общем, для любых сложных задач космонавтики нужны большие пилотируемые системы. Сейчас их выводят в околоземное пространство при помощи жидкостных или твердотопливных реактивных двигателей. Однако из-за низкой энергетической плотности традиционного топлива его использование при совершении длительных космических пилотируемых полетов не эффективно — потребуются запретительно большие его запасы. Подобное ограничение снимается в случае применения в космических полетах ядерных энергетических установок (ЯЭУ) нового поколения.
В России разрабатывается экспериментальная ЯЭУ мегаваттного класса для эксплуатации в космосе. Ее принципиальное отличие от устройств предыдущего поколения — применение капельного метода охлаждения. При помощи холодильника-излучателя установка распыляет жидкость в виде капель в открытый космос и после их охлаждения улавливает обратно для повторного использования. На этой основе планируют создавать более мощные (на десятки и сотни мегаватт) установки, способные обеспечивать как движение, так и другие энергетические нужды перспективных космических систем.
Увеличение уровня энергообеспечения космических аппаратов в десятки раз. Возможность осуществления систематических пилотируемых полетов в пределах, как минимум, ближней Солнечной системы, с многократными посадками и взлетами с различных космических тел. Возможность запуска масштабных проектов по очистке орбит от «космического мусора». Радикальное снижение стоимости космической геологодобычи. |
17 млрд рублей выделено из федерального бюджета РФ на период до 2018 г. на создание космического транспортно-энергетический модуля на основе ядерной энергетической установки мегаваттного класса. до 25 % может увеличиться доля России на мировом рынке космических услуг в среднесрочной перспективе при условии внедрения ядерных космических технологий. |
Международное сотрудничество в сфере космических технологий: объединение интеллектуальных, технических и финансовых ресурсов ведущих технологически развитых стран с целью осуществления пилотируемой экспедиции на Марс. Потребность в привлечении большого числа квалифицированных кадров на всех стадиях производства. Необходимость в более детальной регламентации экологических требований.
|
|
технологии в России «Лидерство» — российские исследователи являются лидерами на мировом уровне. |
«Ядерная батарейка» на никеле-63
Космические спутники получают энергию главным образом от солнечных батарей. Они довольно тяжелые, и для их доставки на орбиту необходимо специальное оборудование, что сказывается на стоимости пусковых услуг. Компактным и надежным источником питания для космических спутников может стать «ядерная батарейка» на никеле-63. По сравнению с литий-ионными источниками питания эти энергообес- печивающие устройства в 30 раз менее габаритны, функционируют в широком диапазоне температур (от -100оС до 200оС), имеют сверхдлительный срок службы (не менее 50 лет).
Разработка «ядерной батарейки» на никеле-63 основывается на технологии преобразования энергии ядерного распада (бета-излучения никеля-63) в электрическую с помощью пьезокристалла. Батарейка вырабатывает электричество в течение длительного времени вне зависимости от местонахождения
спутника в тени или на солнечной стороне. Ее применение позволит создать новое поколение не только космической радиоэлектроники, но и «земной» медицинской техники.
Энергообеспечение космических спутников сроком до 50 лет. |
4,5 млн рублей может составить в 2017 г. себестоимость одного энергогенерирующего устройства на никеле-63.
|
Растущая потребность в надежных источниках питания с долгим сроком эксплуатации. Высокая экологическая безопасность в связи с простотой экранирования излучения. Высокая стоимость и сложная технология производства изотопа никеля-63 (не существует в природе). Невысокий КПД преобразования бета-распада в электроэнергию. |
|
технологии в России «Паритет» — уровень российских исследований не уступает мировому.
|
Мониторинг глобальных технологических трендов проводится Институтом статистических исследований и экономики знаний Высшей школы экономики (issek.hse.ru) в рамках Программы фундаментальных исследований НИУ ВШЭ.
При подготовке трендлеттера использовались следующие источники: Прогноз научно-технологического развития РФ до 2030 года (prognoz2030.hse.ru), материалы научного журнала «Форсайт» (foresight-journal.hse.ru), научно-технического журнала «Полет», данные Web of Science, Orbit, marketsandmarkets.com, world-nuclear-news.org, 3dnews.ru, powerinfo.ru, ixbt.com, news-nn.com, strf.ru, ecoruspace.me, solarsystem.nasa.gov, expert.ru, dept.aoe.vt.edu, chemicool.com, lpi.usra.edu, journal.iate.obninsk.ru, geektimes.ru, lenta.ru, rusila.su, mipt.ru. Более детальную информацию о результатах исследования можно получить в Институте статистических исследований и экономики знаний НИУ ВШЭ: issek@hse.ru, +7 (495) 621-82-74.
© Национальный исследовательский университет «Высшая школа экономики», 2016
Над выпуском работали: Илья Кузьминов, Алина Лавриненко, Лилия Киселева, Анна Гребенюк, Елена Гутарук, Олег Васильев.
Редакция выражает благодарность Александру Путилову за содержательные комментарии к этому выпуску.