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Abstract	16	

One of the main objectives of petroleum exploration consists of predicting reservoir location. 17	

Data collected in the basin are used to better understand the sedimentary architecture, but are 18	

usually insufficient to accurately characterize this architecture. Three-dimensional 19	

stratigraphic forward modeling has brought new insights in the understanding of sediment 20	

distribution. It gives the opportunity to investigate several geological models and to tackle 21	

reservoir presence probability. However, simulation time is a strong limitation to properly 22	

taking the uncertainties into account during operational studies. Here, we propose a 23	

methodology based on metamodels (or surrogate models) to perform sensitivity and risk 24	

analyses. The objective is to reduce the simulation time necessary to quantify the regional 25	
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impact of the input parameters and to estimate probability maps of reservoir presence. The 26	

approach consists of building functions that approximate the spatial outputs of the simulator 27	

(such as sediment thickness or net-to-gross distributions in the basin) and that are fast to 28	

evaluate. These functions are then called instead of the stratigraphic forward simulator for 29	

uncertainty quantification. The proposed methodology is applied to a three-dimensional 30	

synthetic case study, considering uncertainty on input parameters related to sediment 31	

transport, accommodation space and sediment supply. The sensitivity analysis quantifies in 32	

each location the influence of the parameters on the sediment distribution, which can help to 33	

better understand the role of each uncertain process on the basin architecture. In addition, 34	

probability maps of reservoir presence are estimated. The proposed approach is a promising 35	

trade-off between simulation time and information that can be inferred. 36	

 37	

Keywords: process-based stratigraphic simulation, uncertainty, basin modeling, basin 38	

analysis, surrogate models, metamodeling, risk analysis, potential reservoir location. 39	

Introduction	40	

Predicting as accurately as possible the sediment and facies distributions in a basin is critical 41	

in petroleum exploration to get robust estimations of potential reservoir location. This process 42	

is driven by the data collected in the basin. However, they are usually insufficient to 43	

accurately characterize the sediment architecture; different geological scenarios can be 44	

consistent with a single dataset. For a couple of decades, numerical stratigraphic forward 45	

models have brought a new insight on sedimentology as they make it possible to simulate 46	

physical processes related to sediment transport and deposition (e.g. Lawrence et al., 1990; 47	

Flemings and Grotzinger, 1996; Bowman and Vail, 1999; Granjeon and Joseph, 1999). They 48	

can help to better understand the effect of each process alone, or their interactions with one 49	
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another. Parameters affecting the resultant sedimentary rock record include eustasy, grain size 50	

distribution, fluvial discharge, wave effect or sediment supply (e.g. Bonham-Carter and 51	

Sutherland, 1968; Cross, 1989; Tetzlaff and Harbaugh, 1989; Harbaugh et al., 1999; Paola; 52	

2000; Csato et al., 2014; Granjeon, 2014). More detailed studies of the uncertainty related to 53	

the parameters describing physical processes can also be performed. Sensitivity studies make 54	

it possible to identify how these input parameters influence the simulator outputs (e.g. 55	

Bagirov and Lerche, 1999; Burgess et al., 2006; Csato et al., 2013). Calibration processes can 56	

also be considered, using either trial and error or inversion algorithms (e.g. Cross and 57	

Lessenger, 1999; Charvin et al., 2009; Falivene et al., 2014). Many stratigraphic forward 58	

simulations are usually needed to properly take uncertainty into account. For instance, the use 59	

of Monte Carlo methods to estimate the distribution of a given output property due to the 60	

uncertainty on the input parameters requires a large number of calls to the simulator. 61	

However, the number of stratigraphic models that can be investigated during a study is 62	

usually limited by the simulation time. As a result, some authors study the uncertainty related 63	

to a limited number of input parameters only, or consider a reduced sample of the parameter 64	

space, even if it narrows the information that can be retained. 65	

 66	

In this paper, we propose an alternative approach to derive robust interpretations for 67	

petroleum exploration within a limited simulation time. We focus here on quantitative 68	

sensitivity analysis and probability of reservoir presence in each location of the basin. Our 69	

objective is to define a workflow that can be run in practice during an operational study and 70	

provide information related to uncertainty in an exploration context. To that purpose, we 71	

propose to use a methodology already applied for reservoir simulations, called metamodeling 72	

(e.g. Feraille and Marrel, 2012). We assume that the geologist has identified a set of 73	

parameters given as input to the simulator and whose values are uncertain. They will be 74	
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referred to as “input parameters” in what follows. The proposed approach then consists in 75	

building functions computationally fast to evaluate that approximate the relationship between 76	

the input parameters and the simulator output properties. If these metamodels, also called 77	

surrogate models, predict accurately the outputs for any possible value of the input 78	

parameters, they can be used instead of the simulator for uncertainty quantification. In the 79	

context of stratigraphic forward modeling, the simulated properties can vary with the spatial 80	

location (distribution of sediment thickness or net-to-gross in the basin for instance). An 81	

extension of the metamodeling approach based on a reduced basis decomposition is then 82	

applied (Marrel and Perrot, 2012; Douarche et al., 2014; Marrel et al., 2015).  83	

Metamodels are built from a set of simulated values, and a sufficient number of simulations is 84	

required to get accurate predictions. However, once an accurate surrogate model is obtained, 85	

different applications can be envisioned without any additional simulation. In particular, the 86	

influence of the input parameters on the output properties can be estimated at each location of 87	

the basin through a quantitative sensitivity study. Risk analysis can also be considered to 88	

estimate potential sweet spot locations for instance. In this paper, we propose to show the 89	

benefits of the approach in terms of simulation time and information inferred on the basin for 90	

exploration. 91	

 92	

The paper outline is as follows. First, we briefly describe the stratigraphic forward model used 93	

for the simulations. Then, the metamodeling approach is presented, along with the tools used 94	

to assess the quality of the surrogate models. Finally, the potential of the proposed 95	

methodology is demonstrated for sensitivity and risk analyses on a 3D synthetic case study 96	

representative of a passive margin, based on data from the Gulf of Mexico. More precisely, 97	

the distribution of the parameter influence in the basin is obtained for accumulated sediment 98	

thickness and sand proportion. A risk analysis is also conducted following the work of 99	
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Burgess et al. (2006), in which the presence of a reservoir is characterized by sufficiently 100	

large sediment thickness and sand proportion. The metamodeling approach makes it possible 101	

to estimate probability maps of reservoir presence. 102	

Stratigraphic	forward	simulation	103	

Stratigraphic forward simulators are increasingly used in exploration and production 104	

companies to improve predictions of reservoir and facies distributions. Several numerical 105	

models are now available, such as Delft3D (Hoogendoorn et al., 2008), Sedsim (Tetzlaff and 106	

Harbaugh, 1989) and Dionisos (Granjeon and Joseph, 1999; Granjeon, 2014). They differ in 107	

their assumptions, objectives and scales of applications. In this study, we use the Dionisos 108	

software, available as a research and commercial product (DionisosFlowTM). However, the 109	

workflow could be applied with any other stratigraphic forward simulator.  110	

The objective of Dionisos is to simulate transport, deposition and erosion of sediments in a 111	

wide range of depositional environments at the basin scale (10’s km x 10’s km during 10’s 112	

k.y.). The underlying forward model is based on multi grain size diffusional transport laws 113	

with gravity and water driven contributions. Erosion and deposition are controlled by 114	

sediment mass conservation and sediment transport processes. Accommodation is accounted 115	

for through subsidence and eustatic variations. Dionisos is also able to simulate carbonate 116	

deposition using environmental laws of production such as wave effects or bathymetry (Seard 117	

et al., 2013). 118	

Methodology	for	uncertainty	quantification	119	

In what follows, we consider that input parameters are modeled as independent random 120	

variables with given probability distributions. These distributions can be uniform or normal 121	

for instance, and are defined according to the knowledge of the geologist. The objective of the 122	
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proposed workflow is to study the impact of this uncertainty on the sedimentary architecture 123	

of the basin. In this paper, we focus on spatial output properties such as the sediment 124	

distribution in the basin. However, other outputs such as properties along wells could also be 125	

considered. Many forward simulations are usually required to properly take uncertainty into 126	

account. A way to limit their number consists in building functions that approximate the 127	

relationship between the input parameters and the simulator outputs. If these functions 128	

provide accurate predictions for any values of the parameters within their uncertainty range, 129	

they can be used instead of the simulator for sensitivity and risk analysis for instance. The 130	

proposed workflow is summarized in Figure 1. The main steps are available  in the 131	

CougarOpt research software, dedicated to uncertainty management and developed within the 132	

framework of joint industry projects (see e.g. Feraille and Marrel (2012) for more details). 133	

Metamodeling	approach	134	

Metamodels, also referred to as surrogate models or response surfaces, can be used to 135	

approximate scalar outputs of a simulator. They are built from a set of values of the output – 136	

the training set – simulated for a sample of the input parameter space, called design of 137	

experiments. The metamodels then only require a small computation time to provide an 138	

estimation of the output for any other parameter value. Several methods can be considered to 139	

build metamodels: polynomial regression, regression splines, neural network or Gaussian 140	

processes for example. Here, we refer to the last approach: estimations are obtained by 141	

kriging interpolation of the simulated values. More details can be found in Sacks et al. (1989) 142	

or Forrester and Keane (2009), for example.    143	

In practice, the choice of the design of experiments is a key issue to optimize the simulation 144	

time necessary to build accurate metamodels. The number of simulations needed to get 145	

predictive estimations is unknown a priori. It depends on the number of parameters, the 146	

complexity of the relationship between these parameters and the output. If selecting a small 147	
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design, the metamodel may lack accuracy in some parts of the parameter space. Considering 148	

larger designs should improve the predictivity of the metamodel, but at the cost of longer 149	

simulation times. Designs of experiments are generated here following the Latin hypercube 150	

sampling (LHS) method (McKay et al., 1979). This approach takes the input parameter 151	

distribution into account and provides space-filling designs. In addition, all the parameters 152	

vary simultaneously and the size of the sample is chosen by the user. 153	

Many outputs of stratigraphic forward models vary with location in the basin (e.g. the 154	

distribution of the sediment thickness). These spatial properties can be decomposed as a set of 155	

scalar outputs in each grid block. As a result, they can be approximated by a set of 156	

metamodels, one per scalar output. However, the induced computation time can be significant 157	

for a large number of grid blocks. The methodology described in Marrel et al. (2015) and 158	

Douarche et al. (2014) can be considered to overcome this limitation. It extends the kriging 159	

approach to functional outputs and encompasses the following steps: 160	

1. Principal component analysis decomposition 161	

First, we refer to the Karhunen-Loève decomposition (Loève, 1978). The functional 162	

output 𝑦(𝑥,𝜃) can be viewed as an infinite linear combination of orthonormal basis 163	

functions 𝜙!: 164	

𝑦 𝑥,𝜃 = 𝑚 𝑥 + 𝛼!(𝜃)𝜙!(𝑥)
!

!!!

.                 (1) 

In this decomposition, 𝑥 represents the spatial location, 𝜃 the input parameters, 𝑚 the 165	

mean and 𝛼! the projection coefficient on the basis function 𝜙!. The parameters only 166	

influence the projection coefficients 𝛼. With this formulation, the dependences on the 167	

input parameters and spatial location are thus decoupled.  168	

 169	
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In practice, estimating such decomposition boils down to perform a principal 170	

component analysis on the training set 𝑦(𝑥,𝜃!)!!!..!: 171	

𝑦 𝑥,𝜃! = 𝑚 𝑥 + 𝛼!(𝜃!)𝜙!(𝑥)
!

!!!

  for 𝑖 = 1…𝑛.                  (2) 

The basis functions 𝜙! are the principal components. They are sorted in descending 172	

order with respect to the explained variance of the output. If the number of grid blocks 173	

is larger than the size of the training set, then 𝑀 = 𝑛. In practice, an accurate 174	

reconstruction can be obtained considering just some of these functions in linear 175	

combination:  176	

𝑦 𝑥,𝜃! ≃ 𝑚 𝑥 + 𝛼! 𝜃! 𝜙! 𝑥
!

!!!

.                     (3) 

L should be chosen such that the resulting combination corresponds to a sufficiently 177	

large proportion of explained variance. For instance, it was set to explain at least 99% 178	

of the output variance in Douarche et al. (2014) and 95% in Marrel et al. (2015). 179	

 180	

2. Metamodeling 181	

In decomposition equation (3), the input parameters only impact the projection 182	

coefficients 𝛼!(𝜃). Each of these coefficients can be approximated by a classical 183	

kriging-based metamodel 𝛼!∗ 𝜃  using the training set 𝛼!(𝜃!)!!!..!. The predictor of 184	

property 𝑦(𝑥,𝜃) is then, for any value of the parameters: 185	

𝑦∗ 𝑥,𝜃 = 𝑚 𝑥 + 𝛼!∗(𝜃)𝜙!(𝑥)
!

!!!

.                        (4) 

We refer to this approach in what follows.  186	Prel
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Quality	assessment	187	

To assess the quality of the predictor 𝑦∗ 𝑥,𝜃 , we introduce an additional sample of the input 188	

parameter space – the test sample. The values simulated for the corresponding stratigraphic 189	

forward models are compared to the ones given by the predictor. This provides a quantitative 190	

estimation of the predictor quality, the so-called Q2 coefficient. It is defined at each location 191	

𝑥 by: 192	

𝑄2 𝑥 = 1 −
𝑦 𝑥, 𝜃! − 𝑦∗ 𝑥, 𝜃!

!!"
!!!  

𝑦 𝑥, 𝜃! − 𝑦 𝑥
!

!"
!!!

.                         (5)	

𝜃! !!!..!"
	represents the test sample and 𝑦 𝑥  the mean of the corresponding simulated values 193	

𝑦 𝑥,𝜃! !!!..!"
 at location 𝑥. The numerator is the sum of the least-square errors between the 194	

predicted and simulated output values for the test sample. The denominator introduces a 195	

normalization by the output variance. The Q2 coefficient is less than 1 and decreases when 196	

the error increases. In the case of the reduced basis decomposition considered here (equation 197	

3), the Q2 coefficient reflects both the truncation and metamodeling errors.	198	

Uncertainty	quantification	199	

Once an accurate predictor is obtained for the output property of interest, it can replace the 200	

simulator to perform sensitivity analysis and uncertainty propagation. No additional 201	

simulation is required.  202	

The sensitivity analysis consists of estimating the influence of the input parameters on the 203	

output property of interest. It can help to better understand the processes at work in the 204	

different parts of the basin, or to discard the less influential parameters in a calibration 205	

process. Here, we propose to perform a quantitative sensitivity analysis based on Sobol’ 206	

indices (Sobol’, 1990). These indices measure the part of the output variance due to the 207	
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parameters or their interactions. The first order index, or primary effect, quantifies the part of 208	

the output variance explained by a parameter alone. Higher order indices are related to 209	

parameter interaction effects that are not included in first order indices. The Sobol’ indices 210	

vary between 0 and 1. They get closer to one when the part of the output variance explained 211	

by the parameters increases. The sum of all the Sobol’ indices involving a given parameter is 212	

called the total effect (Homma and Saltelli, 1996). It estimates the global sensitivity of the 213	

output to the parameter.  214	

Sobol’ indices are associated with a given scalar output. For spatial properties, these indices 215	

can be estimated in each grid block, which then provides the distribution of the parameter 216	

influence in the basin.   217	

 218	

Finally, the uncertainty on the input parameters can be propagated to the output property of 219	

interest. To that purpose, the parameters are sampled according to their distributions (Monte-220	

Carlo method for instance), and the corresponding values of the output are estimated from the 221	

surrogate models. To analyze the resulting output sample, percentiles can be computed in 222	

each grid block. Probabilities to meet some criteria, defining for instance a potential reservoir, 223	

can also be estimated at each location.  224	

Application	to	a	geological	case	study	225	

Case	study	226	

The potential of the proposed workflow is illustrated on a 3D synthetic case study based on 227	

data from the Gulf of Mexico (Burgess et al., 2006). The model represents a clastic passive 228	

margin of 1000 km × 1000 km (621 mi × 621 mi) which consists of a continental shelf, 229	

margin slopes, a basin floor with some relief and a submarine canyon. The initial bathymetry 230	

is given in Figure 2.  231	
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The basin is discretized into 50 × 50 grid blocks with a resolution of 20 km (12.4 mi). This 232	

resolution is larger than the one are generally considered (1 to 10 km (0.6 to 6.2 mi) for clastic 233	

environments for instance). However, our objective was to illustrate the potential of the 234	

proposed approach, which applies in the same way whatever the size of the grid blocks. The 235	

basin infill is simulated with Dionisos during a period of 3 m.y. with time steps of 0.2 m.y.. A 236	

sediment source of 3 cells wide is assumed on the western margin (Figure 2). The sediment 237	

input is composed of a constant supply of mud and sand. The sediments are distributed in the 238	

basin according to gravity-driven and water-driven diffusional processes. Eustatic oscillations 239	

are represented by a sinusoid. Basin deformation is related to subsidence rate and flexural 240	

isostasy defined by an elastic plate thickness of 30 km (18.6 mi). Finally, mechanical 241	

compaction applies to the deposited sediments with respect to the sand/mud ratio.  242	

	243	

The uncertainty considered in this study is related to the three major processes that affect the 244	

sedimentary architecture of the basin: accommodation, sediment and water supplies, and 245	

sediment transport. Uncertainty on accommodation is accounted for through a uniform 246	

subsidence rate and the amplitude and period of eustatic variations. Uncertainty on supplies is 247	

characterized by the variations in total sediment volume inflow, sand/mud proportion and 248	

water discharge. Last, a reference transport coefficient is introduced to take the uncertainty on 249	

the diffusional processes and water discharge into account. This reference coefficient 250	

characterizes the water-driven diffusion of sand in the marine environment and drives the 251	

perturbation of all other water-driven transport coefficients together with two additional 252	

parameters: the ratio between the mud and sand diffusion coefficients, and the ratio between 253	

the continental and marine diffusion coefficients. This parameterization reduces the number 254	

of unknowns and prevents the simulation of inconsistent scenarios (e.g. better transport of 255	
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sand than mud). Also, the parameters are related to a physical process, so that the results are 256	

more easily related to the physics of the problem.  257	

Input parameters are assigned uniform distributions and the ranges of variation given in Table 258	

1. These intervals were deduced from the values considered in Burgess et al. (2006). The 259	

gravity diffusion coefficients are held constant at 0.01 km2/k.y. (0.0038 mi2/k.y.). The 260	

uncertainty on compaction is not considered here as it was expected to have a much lower 261	

impact on accommodation compared to eustastic variations. 262	

	263	

Metamodeling 264	

A set of simulations is required to build metamodels. In this study, four training sets of size 265	

30, 60, 90 and 120 are generated following the Latin hypercube sampling (LHS) method. An 266	

additional LHS of 50 simulations – the test sample – is also generated to assess the quality of 267	

the metamodels.  268	

 269	

Two output properties are considered: a map of sediment thickness defined as the 270	

accumulated thickness of deposited sediments in each column of the grid, and a map of sand 271	

proportion defined as the total proportion of sand in each column of the grid. These property 272	

maps are used to characterize potential reservoirs in the basin. Their mean and standard 273	

deviation in the test sample after a simulation period of 0.4 and 3 m.y. are given in Figure 3. 274	

For this figure and the following ones, the values are mapped on the average topography 275	

computed on the test sample after 0.4 and 3 m.y., respectively. In addition, unfilled grid 276	

blocks indicate areas with no deposition. At the beginning of the simulation period (0.4 m.y.), 277	

sediments are mainly deposited in the delta near the input source (indicated by the white 278	

arrow), the submarine canyon and the western margin toe-of-slope (Figure 3A). These regions 279	

also correspond to the highest sand proportion (Figure 3E). At this time, no deposition has 280	
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occurred on the relief of the basin floor (Figure 3A). After 3 m.y., the submarine canyon has 281	

generally been filled and the topography of the western margin is globally symmetrical with 282	

respect to the input source (Figure 3C). The sediment deposition has spread around the entry 283	

point, and the basin relief is covered with sediments for some simulations. Sand is still mainly 284	

located near the source and on the western margin (Figure 3G).  285	

 286	

To approximate the sediment thickness and sand proportion, a principal component analysis is 287	

performed on each training set (equation 2). Only the components necessary to explain 98% 288	

of the output variance are retained. Then, kriging-based surrogate models are computed for 289	

the projection coefficients associated to the reduced bases (equation 4). The metamodeling 290	

approach is applied to the values simulated after 0.4 and 3 m.y.. The quality of the resulting 291	

predictors for the sediment thickness and sand proportion is estimated from the 50 simulations 292	

of the test sample. The resulting values of the Q2 coefficients (equation 5) are given in Figure 293	

4. The Q2 coefficient cannot be computed in the grid blocks where deposition never occurs in 294	

the test sample, so that no values are displayed (unfilled grid blocks).  295	

 296	

Globally, the two properties are better predicted when the size of the training set increases 297	

(larger values of the Q2 coefficient). The regions with less accuracy are located on the 298	

boundary of the deposition area and in distal parts of the basin, where sediments are deposited 299	

in a few simulations only. The predictions are globally more accurate for sediment thickness 300	

than for sand proportion, with larger values of the Q2 coefficient. With the proposed 301	

approach, sand proportion thus appears more difficult to estimate than sediment thickness for 302	

the same LHS. However, the predictions obtained with the largest training set are globally 303	

accurate in the regions with a significant deposition of sand (Figures 3B, 3D, 3F, 3G and 4D, 304	

4H, 4L, 4P).  305	
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 306	

The quality of the metamodels is also illustrated in Figure 5, which shows the distribution of 307	

the true and predicted values of sand proportion after 0.4 and 3 m.y. for two models of the test 308	

sample. The general trends are captured with only 30 models. However, considering a larger 309	

training set makes it possible to predict more accurately the distribution.  310	

 311	

 312	

Sensitivity	analysis	313	

A variance-based sensitivity study was performed on the spatial distribution of sediment 314	

thickness and sand proportion, using the training set of 120 models. Figure 6 shows the total 315	

effect on these properties for the most influential parameters.   316	

 317	

The sediment supply, water discharge and reference diffusion coefficient have a significant 318	

influence on both the sediment thickness and sand proportion distribution (large total effect, 319	

see Figures 6A to 6L). The sediment supply is globally the most influential parameter for the 320	

sediment thickness, with a dominant impact on the outer part of the delta (at 0.4 m.y.) and the 321	

western margin (Figures 6A and 6B). The sand proportion deposited in the delta and the 322	

western margin is mainly influenced by the sand proportion in the input source (Figures 6O 323	

and 6P), whereas the values in the more distal part of the basin appear driven by the mud/sand 324	

diffusion coefficient ratio (Figures 6S and 6T). The water discharge and reference diffusion 325	

coefficient have an equivalent impact, which is spatially distributed where the three above 326	

parameters have a lower influence (Figures 6E to 6L). Finally, the eustasy amplitude has an 327	

impact on the sediment thickness around the sediment entry point at the beginning of the 328	

simulation period (Figure 6M), but this effect disappears after some time (Figure 6N). On the 329	
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contrary, the subsidence rate becomes more influential through time in this area (Figures 6Q 330	

and 6R). 331	

 332	

The information provided by sensitivity analyses can help to better choose the parameters to 333	

be tuned in the calibration step. For instance, if well data are available, these parameters may 334	

be different depending on the location of the well.  335	

	336	

Risk	analysis	337	

The predictors for sediment thickness and sand proportion can also be used to perform risk 338	

analysis, for instance to study the location of potential reservoirs. Indeed, the probability 339	

distribution of these outputs due to the uncertainty on the input parameters can be estimated 340	

by sampling the distribution assigned to each input parameter and computing the 341	

corresponding values predicted by the surrogate models.  342	

 343	

We consider here a Monte Carlo sample of the parameter space. The metamodels built with 344	

the training set of size 120 are used to estimate the corresponding sample of the sediment 345	

thickness and sand proportion distributions in the basin. Various analyses can then be 346	

performed on this sample. 347	

 348	

First, percentiles can be estimated in each grid block. For instance, the maps of P5 and P95 349	

percentiles for the sediment thickness at 3 m.y. are given in Figure 7. As evidenced in Figure 350	

7B, at least 300 m (984 ft) of sediments are deposited in the delta and the submarine canyon 351	

for 95% of the sample. In addition, the probability to reach a sediment thickness of at least 352	

1000 m (3281 ft) on the western margin is about 5% (Figure 7D). 353	

 354	
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The Monte Carlo sample can also be used to estimate in each grid block the probability to 355	

meet some physical criteria. Following Burgess et al. (2006), we can identify potential 356	

reservoir zones characterized by sufficiently large sediment thickness and sand proportion. 357	

We consider here the probability to obtain a sediment thickness larger than 60 m (197 ft) and 358	

a sand proportion greater than 25% after 3 m.y.. The resulting maps are given in Figures 8A 359	

and 8B, together with the probability to meet the two criteria (Figure 8C). The region with a 360	

probability larger than 50% to be a reservoir zone is displayed in black in Figure 8D. It 361	

consists of the delta, the submarine canyon and the western margin toe-of-slope.  362	

 363	

Finally, the parameter distribution corresponding to the sub-sample that meets the above 364	

criteria provides additional information on the dynamic system. It complements the sensitivity 365	

analysis by providing trends for parameter values that result in potential reservoir zones. For 366	

instance, we consider here three points A, B and C located in the delta, the submarine canyon 367	

and the western margin toe-of-slope, respectively (Figure 8C). The values of the input 368	

parameters for which the sediment thickness exceeds 60 m and the sand proportion exceeds 369	

25% at these locations are given in Figure 9 to Figure 11. The potential reservoirs in grid 370	

block A correspond to sufficiently large values for the source sand proportion, and more often 371	

to a large sediment supply. The reservoirs in grid block B (submarine canyon) are mainly 372	

characterized by a sufficiently large sand proportion in the input source. Finally, the reservoirs 373	

in grid block C, located on the western margin toe-of-slope, correspond to sufficiently large 374	

values for the source sand proportion, and more often to large values of the sediment supply, 375	

water discharge and reference diffusion coefficient. The results obtained here are consistent 376	

with the quantitative sensitivity analysis (Figure 6). Indeed, the subsample of the parameters 377	

that were not identified as influential at locations A, B and C remain close to uniform. On the 378	

contrary, the distributions of the most influential parameters are completely different from the 379	

Prel
im

ina
ry 

Vers
ion



17	
	

initial ones. The analysis presented here also provides information that could help for the 380	

calibration process. For instance, if data were available at location A stating the presence of a 381	

reservoir (as defined with the above criteria), the uncertainty range of the sand proportion 382	

could be reduced for calibration. 383	

Conclusions	and	perspectives	384	

In this work, we propose an approach to take into account the uncertainty on the stratigraphic 385	

model input parameters from a limited number of stratigraphic forward simulations. It 386	

consists in building metamodels that approximate the relationship between the input 387	

parameters and the outputs of the simulator. These metamodels are built by kriging 388	

interpolation of the output values simulated for a sample of the input parameter space. They 389	

provide estimations of the output for all other values of the parameters. If these estimations 390	

are close to the true (simulated) values, they can be used for uncertainty quantification. In 391	

particular, they make it possible to apply quantitative sensitivity analysis algorithms and 392	

Monte Carlo methods without additional simulation.  393	

 394	

The method is illustrated on a 3D synthetic case representative of a passive margin. It 395	

provides globally accurate predictions of the accumulated sediment thickness and sand 396	

proportion deposited in the basin from a limited simulation time. Using these metamodels, we 397	

estimate the influence of the input parameters at all locations. This information can help to 398	

discriminate among the various geological processes occurring in the formation of the 399	

sedimentary architecture. It also paves the way for new interpretations related to basin 400	

physiography and geological processes that provide guidelines for the model calibration. 401	

Finally, the metamodels are used to estimate probability maps of reservoir presence. In 402	

practice, the proposed workflow can be run automatically except for the size of the 403	
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experimental design. In the future, it would be interesting to introduce an automatic definition 404	

of this design, using for instance sequential approaches. They consist in complementing 405	

iteratively an initial sample with new simulations judiciously chosen. 406	

 407	

Interpretations of the results should be related to the assumptions and formulations of the 408	

stratigraphic forward model and to the choice of the uncertainty (parameters and range of 409	

variation). In the test case considered here, the choice of the input parameters was driven by a 410	

previous study. In practice, many parameters are potentially unknown. In that case, it is 411	

recommended to discard first the non-influential ones before running the proposed workflow. 412	

This can be achieved from a limited number of simulations using for instance screening 413	

methods.  414	

 415	

The results of our approach can be easily integrated in a study and should be seen as 416	

complementary to other kinds of studies (seismic interpretations, well correlation, sequence-417	

stratigraphy). They can help petroleum geologists to prospect their basin and determine the 418	

most probable locations of adequate reservoir rock in the context of relatively unknown basin 419	

architectures. In particular, the proposed approach can help to identify a few geological 420	

scenarios representing the model uncertainty. These scenarios can then be used to initialize 421	

basin models with sedimentary facies maps, obtained from a classification of the stratigraphic 422	

model continuous outputs (sand proportion, bathymetry for instance) into basin model 423	

lithologies.  424	
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Figure	captions	532	

Figure 1 – Workflow for uncertainty quantification. 533	

Figure 2 – Initial bathymetry, with a vertical exaggeration of 200. The location of the 534	
sediment input source on the western margin is indicated by the large white arrow. 535	

Table 1 – Uncertainty range for the input parameters. 536	

Figure 3 - Average (top) and standard deviation (bottom) computed on the test sample (50 537	
models) for the accumulated sediment thickness (left) and sand proportion (right) deposited 538	
after 0.4 and 3 m.y.. In this figure and all subsequent ones, the results presented at 0.4 and 3 539	
m.y. are mapped on the average topography computed on the test sample at 0.4 and 3 m.y., 540	
respectively, with a vertical exaggeration of 200. Sedimentation never occurs in the unfilled 541	
grid blocks. The white arrow indicates the sediment input source location. 542	

Figure 4 - Q2 coefficient computed with the training sets of size 30, 60, 90 and 120 for the 543	
accumulated sediment thickness and sand proportion deposited after 0.4 and 3 m.y.. The 544	
values are not displayed in the grid blocks where sediment deposition never occurs in the test 545	
sample (unfilled grid blocks). 546	

Figure 5 - Sand proportion simulated (first column) and predicted for two models of the test 547	
sample after 0.4 and 3 m.y., considering metamodels built from the training sets of size 30 548	
(second column) and 120 (third column).  549	

Figure 6 –Total effect computed for the input parameters that have a significant influence on 550	
the accumulated sediment thickness (left) and sand proportion (right) in the basin after 0.4 and 551	
3 m.y.. The training set of size 120 is used to predict the properties. The values are not 552	
displayed in the grid blocks where sediment deposition never occurs in the training set 553	
(unfilled grid blocks). 554	
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Figure 7 – P5 (top) and P95 (bottom) percentiles estimated for the sediment thickness after 3 555	
m.y.. The maximum value of the color scale is limited to 300 m and 1000 m in figures (b) and 556	
(d) for the P5 and P95 percentiles, respectively. The values are not displayed in the grid 557	
blocks where sediment deposition never occurs in the training set (unfilled grid blocks). 558	

Figure 8 -  Estimated probability of meeting various criteria after 3 m.y. The values are not 559	
displayed in the grid blocks where sediment deposition never occurs in the training sample 560	
(unfilled grid blocks). 561	

Figure 9 – Parameter distribution in the set of models for which the sediment thickness is 562	
larger than 60 m and the sand proportion greater than 25% in grid block A. 563	

Figure 10 – Parameter distribution in the set of models for which the sediment thickness is 564	
larger than 60 m and the sand proportion greater than 25% in grid block B. 565	

Figure 11 – Parameter distribution in the set of models for which the sediment thickness is 566	
larger than 60 m and the sand proportion greater than 25% in grid block C. 567	
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Table 1
Minimum value Maximum value

Eustasy–Period (m.y.) 0.5 2
Eustasy–Amplitude (m) 5 (16.4 ft) 50 (164 ft)

Subsidence rate 25 (82 ft/m.y.) 75 (246 ft/m.y.)

Source - supply (km3/m.y.)
20000 (4800 

mi3/m.y.)

80000 (19200 

mi3/m.y.)
Source - sand proportion 10 40

Water discharge (%) 50 200
Sand marine diffusion coefficient - 

reference coefficient (km2/k.y.)

0.5 (0.19 

mi2/k.y.) 2 (0.77 mi2/k.y.)
Continental/marine diffusion 

coefficeint ration (-) 50 100
Mud/sand diffusion coefficient 

ration (-) 1.5 4.5

Accommodation

Sediment supply

Sediment transport

Input parameters
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