Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v86y2009i4p505-510.html
   My bibliography  Save this item

Forecasting electricity spot market prices with a k-factor GIGARCH process

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
  2. Javed, Fahad & Arshad, Naveed & Wallin, Fredrik & Vassileva, Iana & Dahlquist, Erik, 2012. "Forecasting for demand response in smart grids: An analysis on use of anthropologic and structural data and short term multiple loads forecasting," Applied Energy, Elsevier, vol. 96(C), pages 150-160.
  3. Lin, Whei-Min & Gow, Hong-Jey & Tsai, Ming-Tang, 2010. "An enhanced radial basis function network for short-term electricity price forecasting," Applied Energy, Elsevier, vol. 87(10), pages 3226-3234, October.
  4. Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
  5. Fanelli, Viviana & Maddalena, Lucia & Musti, Silvana, 2016. "Modelling electricity futures prices using seasonal path-dependent volatility," Applied Energy, Elsevier, vol. 173(C), pages 92-102.
  6. Erdogdu, Erkan, 2010. "A paper on the unsettled question of Turkish electricity market: Balancing and settlement system (Part I)," Applied Energy, Elsevier, vol. 87(1), pages 251-258, January.
  7. Loizidis, Stylianos & Kyprianou, Andreas & Georghiou, George E., 2024. "Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets," Applied Energy, Elsevier, vol. 363(C).
  8. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
  9. Gianfreda, Angelica & Grossi, Luigi, 2012. "Forecasting Italian electricity zonal prices with exogenous variables," Energy Economics, Elsevier, vol. 34(6), pages 2228-2239.
  10. F. Cordoni, 2020. "A comparison of modern deep neural network architectures for energy spot price forecasting," Digital Finance, Springer, vol. 2(3), pages 189-210, December.
  11. Leschinski, Christian & Sibbertsen, Philipp, 2014. "Model Order Selection in Seasonal/Cyclical Long Memory Models," Hannover Economic Papers (HEP) dp-535, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  12. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
  13. Tafakori, Laleh & Pourkhanali, Armin & Fard, Farzad Alavi, 2018. "Forecasting spikes in electricity return innovations," Energy, Elsevier, vol. 150(C), pages 508-526.
  14. Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
  15. Laurent Ferrara & Dominique Guegan & Zhiping Lu, 2008. "Testing fractional order of long memory processes: a Monte Carlo study," Documents de travail du Centre d'Economie de la Sorbonne b08012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  16. Amjady, Nima & Keynia, Farshid, 2010. "A new spinning reserve requirement forecast method for deregulated electricity markets," Applied Energy, Elsevier, vol. 87(6), pages 1870-1879, June.
  17. Foued Saâdaoui, 2013. "The Price and Trading Volume Dynamics Relationship in the EEX Power Market: A Wavelet Modeling," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 47-69, June.
  18. Niels Haldrup & Oskar Knapik & Tommaso Proietti, 2016. "A generalized exponential time series regression model for electricity prices," CREATES Research Papers 2016-08, Department of Economics and Business Economics, Aarhus University.
  19. Dominique Guegan & Zhiping Lu, 2009. "Wavelet Method for Locally Stationary Seasonal Long Memory Processes," Post-Print halshs-00375531, HAL.
  20. Laurent Ferrara & Dominique Guegan, 2006. "Fractional seasonality: Models and Application to Economic Activity in the Euro Area," Post-Print halshs-00185370, HAL.
  21. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
  22. Laurent Ferrara & Dominique Guegan & Zhiping Lu, 2008. "Testing fractional order of long memory processes : a Monte Carlo study," Post-Print halshs-00259193, HAL.
  23. Hryshchuk, Antanina & Lessmann, Stefan, 2018. "Deregulated day-ahead electricity markets in Southeast Europe: Price forecasting and comparative structural analysis," IRTG 1792 Discussion Papers 2018-009, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  24. García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2013. "Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities," Applied Energy, Elsevier, vol. 101(C), pages 363-375.
  25. Faddy Ardian & Silvia Concettini & Anna Creti, 2018. "Renewable Generation and Network Congestion: An Empirical Analysis of the Italian Power Market," The Energy Journal, , vol. 39(2_suppl), pages 3-40, December.
  26. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
  27. Charalampos Basdekis & Apostolos Christopoulos & Alexandros Gkolfinopoulos & Ioannis Katsampoxakis, 2022. "VaR as a risk management framework for the spot and futures tanker markets," Operational Research, Springer, vol. 22(4), pages 4287-4352, September.
  28. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
  29. Liu, Luyao & Bai, Feifei & Su, Chenyu & Ma, Cuiping & Yan, Ruifeng & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2022. "Forecasting the occurrence of extreme electricity prices using a multivariate logistic regression model," Energy, Elsevier, vol. 247(C).
  30. Liu, Heping & Shi, Jing, 2013. "Applying ARMA–GARCH approaches to forecasting short-term electricity prices," Energy Economics, Elsevier, vol. 37(C), pages 152-166.
  31. Tryggvi Jónsson & Pierre Pinson & Henrik Madsen & Henrik Aalborg Nielsen, 2014. "Predictive Densities for Day-Ahead Electricity Prices Using Time-Adaptive Quantile Regression," Energies, MDPI, vol. 7(9), pages 1-25, August.
  32. Gunnhildur H. Steinbakk & Alex Lenkoski & Ragnar Bang Huseby & Anders L{o}land & Tor Arne {O}ig{aa}rd, 2018. "Using published bid/ask curves to error dress spot electricity price forecasts," Papers 1812.02433, arXiv.org.
  33. Heni Boubaker & Nawres Bannour, 2023. "Coupling the Empirical Wavelet and the Neural Network Methods in Order to Forecast Electricity Price," JRFM, MDPI, vol. 16(4), pages 1-22, April.
  34. Rahimiyan, Morteza & Morales, Juan M. & Conejo, Antonio J., 2011. "Evaluating alternative offering strategies for wind producers in a pool," Applied Energy, Elsevier, vol. 88(12), pages 4918-4926.
  35. Naser Rostamni & Tarik A. Rashid, 2019. "Investigating the effect of competitiveness power in estimating the average weighted price in electricity market," Papers 1907.11984, arXiv.org.
  36. Papaioannou, George P. & Dikaiakos, Christos & Dagoumas, Athanasios S. & Dramountanis, Anargyros & Papaioannou, Panagiotis G., 2018. "Detecting the impact of fundamentals and regulatory reforms on the Greek wholesale electricity market using a SARMAX/GARCH model," Energy, Elsevier, vol. 142(C), pages 1083-1103.
  37. He, Kaijian & Yu, Lean & Tang, Ling, 2015. "Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology," Energy, Elsevier, vol. 91(C), pages 601-609.
  38. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
  39. Souhir Ben Amor & Heni Boubaker & Lotfi Belkacem, 2022. "A Dual Generalized Long Memory Modelling for Forecasting Electricity Spot Price: Neural Network and Wavelet Estimate," Papers 2204.08289, arXiv.org.
  40. G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
  41. Leschinski, Christian & Sibbertsen, Philipp, 2019. "Model order selection in periodic long memory models," Econometrics and Statistics, Elsevier, vol. 9(C), pages 78-94.
  42. Souhir Ben Amor & Heni Boubaker & Lotfi Belkacem, 2022. "Predictive Accuracy of a Hybrid Generalized Long Memory Model for Short Term Electricity Price Forecasting," Papers 2204.09568, arXiv.org.
  43. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
  44. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.