Global Uncertainty
Author
Suggested Citation
Download full text from publisher
Other versions of this item:
- Giovanni Caggiano & Efrem Castelnuovo, 2021. "Global Uncertainty," "Marco Fanno" Working Papers 0269, Dipartimento di Scienze Economiche "Marco Fanno".
- Caggiano, Giovanni & Castelnuovo, Efrem, 2021. "Global uncertainty," Bank of Finland Research Discussion Papers 1/2021, Bank of Finland.
- Giovanni Caggiano & Efrem Castelnuovo, 2021. "Global uncertainty," CAMA Working Papers 2021-21, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Giovanni Caggiano & Efrem Castelnuovo, 2021. "Global Uncertainty," CESifo Working Paper Series 8885, CESifo.
References listed on IDEAS
- Baumeister, Christiane & Hamilton, James D., 2020.
"Drawing conclusions from structural vector autoregressions identified on the basis of sign restrictions,"
Journal of International Money and Finance, Elsevier, vol. 109(C).
- Christiane Baumeister & James D. Hamilton, 2020. "Drawing Conclusions from Structural Vector Autoregressions Identified on the Basis of Sign Restrictions," NBER Working Papers 26606, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Hamilton, James, 2020. "Drawing Conclusions from Structural Vector Autoregressions Identified on the Basis of Sign Restrictions," CEPR Discussion Papers 14271, C.E.P.R. Discussion Papers.
- Marta Bańbura & Michele Modugno, 2014.
"Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
- Bańbura, Marta & Modugno, Michele, 2010. "Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data," Working Paper Series 1189, European Central Bank.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Claveria, Oscar, 2022. "Global economic uncertainty and suicide: Worldwide evidence," Social Science & Medicine, Elsevier, vol. 305(C).
- Oscar Claveria, 2021. "Disagreement on expectations: firms versus consumers," SN Business & Economics, Springer, vol. 1(12), pages 1-23, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giovanni Caggiano & Efrem Castelnuovo, 2023. "Global financial uncertainty," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 432-449, April.
- Miescu, Mirela & Rossi, Raffaele, 2021.
"COVID-19-induced shocks and uncertainty,"
European Economic Review, Elsevier, vol. 139(C).
- Mirela Miescu & Raffaele Rossi, 2020. "COVID-19-Induced Shocks and Uncertainty," Economics Discussion Paper Series 2013, Economics, The University of Manchester, revised Aug 2021.
- Libero Monteforte & Valentina Raponi, 2019.
"Short‐term forecasts of economic activity: Are fortnightly factors useful?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
- Libero Monteforte & Valentina Raponi, 2018. "Short term forecasts of economic activity: are fortnightly factors useful?," Temi di discussione (Economic working papers) 1177, Bank of Italy, Economic Research and International Relations Area.
- David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012.
"A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models,"
The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
- Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A quasi maximum likelihood approach for large approximate dynamic factor models," Working Paper Series 674, European Central Bank.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Post-Print hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2008. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," Working Papers ECARES 2008_034, ULB -- Universite Libre de Bruxelles.
- Reichlin, Lucrezia & Doz, Catherine & Giannone, Domenico, 2006. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," CEPR Discussion Papers 5724, C.E.P.R. Discussion Papers.
- David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
- Knotek, Edward S. & Zaman, Saeed, 2023.
"Real-time density nowcasts of US inflation: A model combination approach,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
- Edward Knotek & Saeed Zaman, 2020. "Real-time density nowcasts of US inflation: a model-combination approach," Working Papers 2015, University of Strathclyde Business School, Department of Economics.
- Edward S. Knotek & Saeed Zaman, 2020. "Real-Time Density Nowcasts of US Inflation: A Model-Combination Approach," Working Papers 20-31, Federal Reserve Bank of Cleveland.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018.
"Combined Density Nowcasting in an Uncertain Economic Environment,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an Uncertain Economic Environment," Tinbergen Institute Discussion Papers 14-152/III, Tinbergen Institute.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
- Pablo Guerrón-Quintana & Alexey Khazanov & Molin Zhong, 2023. "Financial and Macroeconomic Data Through the Lens of a Nonlinear Dynamic Factor Model," Finance and Economics Discussion Series 2023-027, Board of Governors of the Federal Reserve System (U.S.).
- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Daniela Bragoli & Jack Fosten, 2018.
"Nowcasting Indian GDP,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 259-282, April.
- Daniela Bragoli & Jack Fosten, 2016. "Nowcasting Indian GDP," University of East Anglia School of Economics Working Paper Series 2016-06, School of Economics, University of East Anglia, Norwich, UK..
- Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
- Gary Koop & Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon & Ping Wu, 2023.
"Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting,"
Working Papers
23-09, Federal Reserve Bank of Cleveland.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon & Ping Wu, 2023. "Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting," Working Papers 2311, University of Strathclyde Business School, Department of Economics.
- Valenti, Daniele & Bastianin, Andrea & Manera, Matteo, 2023.
"A weekly structural VAR model of the US crude oil market,"
Energy Economics, Elsevier, vol. 121(C).
- Valenti, Daniele & Bastianin, Andrea & Manera, Matteo, "undated". "A weekly structural VAR model of the US crude oil market," FEEM Working Papers 324040, Fondazione Eni Enrico Mattei (FEEM).
- Daniele Valenti & Andrea Bastianin & Matteo Manera, 2022. "A weekly structural VAR model of the US crude oil market," Working Papers 2022.11, Fondazione Eni Enrico Mattei.
- Cleiton Guollo Taufemback, 2023. "Asymptotic Behavior of Temporal Aggregation in Mixed‐Frequency Datasets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 894-909, August.
- Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Working Paper
2013/06, Norges Bank.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
- Nikoleta Anesti & Ana Beatriz Galvao & Silvia Miranda-Agrippino, 2018.
"Uncertain Kingdom: Nowcasting GDP and its Revisions,"
Discussion Papers
1824, Centre for Macroeconomics (CFM).
- Anesti, Nikoleta & Galvão, Ana & Miranda-Agrippino, Silvia, 2018. "Uncertain Kingdom: nowcasting GDP and its revisions," Bank of England working papers 764, Bank of England, revised 31 Jan 2020.
- Anesti, Nikoleta & Galvao, Ana Beatriz & Miranda-Agrippino, Silvia, 2018. "Uncertain kingdom: nowcasting GDP and its revisions," LSE Research Online Documents on Economics 90382, London School of Economics and Political Science, LSE Library.
- Bragoli, Daniela & Modugno, Michele, 2017.
"A now-casting model for Canada: Do U.S. variables matter?,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 786-800.
- Daniela Bragoli & Michele Modugno, 2016. "A Nowcasting Model for Canada: Do U.S. Variables Matter?," Finance and Economics Discussion Series 2016-036, Board of Governors of the Federal Reserve System (U.S.).
- Nikoleta Anesti & Ana Beatriz Galvão & Silvia Miranda‐Agrippino, 2022. "Uncertain Kingdom: Nowcasting Gross Domestic Product and its revisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 42-62, January.
More about this item
Keywords
Global Financial Uncertainty; dynamic hierarchical factor model; structural VAR; world output loss; global Önance uncertainty multiplier.;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CWA-2021-10-11 (Central and Western Asia)
- NEP-IFN-2021-10-11 (International Finance)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mos:moswps:2021-12. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Simon Angus (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.