Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/mos/moswps/2021-12.html
   My bibliography  Save this paper

Global Uncertainty

Author

Listed:
  • Giovanni Caggiano

    (Monash University and University of Padova)

  • Efrem Castelnuovo

    (University of Padova)

Abstract
We estimate a novel measure of global financial uncertainty (GFU) with a dynamic factor framework that jointly models global, regional, and country-specific factors. We quantify the impact of GFU shocks on global output with a VAR analysis that achieves set-identification via a combination of narrative, sign, ratio, and correlation restrictions. We find that the world output loss that materialized during the great recession would have been 13% lower in absence of GFU shocks. We also unveil the existence of a global finance uncertainty multiplier: the more global financial conditions deteriorate after a GFU shock, the larger the world output contraction is.

Suggested Citation

  • Giovanni Caggiano & Efrem Castelnuovo, 2021. "Global Uncertainty," Monash Economics Working Papers 2021-12, Monash University, Department of Economics.
  • Handle: RePEc:mos:moswps:2021-12
    as

    Download full text from publisher

    File URL: http://monash-econ-wps.s3-ap-southeast-2.amazonaws.com/RePEc/mos/moswps/2021-12.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Baumeister, Christiane & Hamilton, James D., 2020. "Drawing conclusions from structural vector autoregressions identified on the basis of sign restrictions," Journal of International Money and Finance, Elsevier, vol. 109(C).
    2. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claveria, Oscar, 2022. "Global economic uncertainty and suicide: Worldwide evidence," Social Science & Medicine, Elsevier, vol. 305(C).
    2. Oscar Claveria, 2021. "Disagreement on expectations: firms versus consumers," SN Business & Economics, Springer, vol. 1(12), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Caggiano & Efrem Castelnuovo, 2023. "Global financial uncertainty," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 432-449, April.
    2. Miescu, Mirela & Rossi, Raffaele, 2021. "COVID-19-induced shocks and uncertainty," European Economic Review, Elsevier, vol. 139(C).
    3. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
    4. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
    5. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    6. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    7. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    8. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    9. Pablo Guerrón-Quintana & Alexey Khazanov & Molin Zhong, 2023. "Financial and Macroeconomic Data Through the Lens of a Nonlinear Dynamic Factor Model," Finance and Economics Discussion Series 2023-027, Board of Governors of the Federal Reserve System (U.S.).
    10. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    11. Daniela Bragoli & Jack Fosten, 2018. "Nowcasting Indian GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 259-282, April.
    12. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    13. Gary Koop & Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon & Ping Wu, 2023. "Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting," Working Papers 23-09, Federal Reserve Bank of Cleveland.
    14. Valenti, Daniele & Bastianin, Andrea & Manera, Matteo, 2023. "A weekly structural VAR model of the US crude oil market," Energy Economics, Elsevier, vol. 121(C).
    15. Cleiton Guollo Taufemback, 2023. "Asymptotic Behavior of Temporal Aggregation in Mixed‐Frequency Datasets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(4), pages 894-909, August.
    16. Eraslan, Sercan & Schröder, Maximilian, 2019. "Nowcasting GDP with a large factor model space," Discussion Papers 41/2019, Deutsche Bundesbank.
    17. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    18. Nikoleta Anesti & Ana Beatriz Galvao & Silvia Miranda-Agrippino, 2018. "Uncertain Kingdom: Nowcasting GDP and its Revisions," Discussion Papers 1824, Centre for Macroeconomics (CFM).
    19. Bragoli, Daniela & Modugno, Michele, 2017. "A now-casting model for Canada: Do U.S. variables matter?," International Journal of Forecasting, Elsevier, vol. 33(4), pages 786-800.
    20. Nikoleta Anesti & Ana Beatriz Galvão & Silvia Miranda‐Agrippino, 2022. "Uncertain Kingdom: Nowcasting Gross Domestic Product and its revisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 42-62, January.

    More about this item

    Keywords

    Global Financial Uncertainty; dynamic hierarchical factor model; structural VAR; world output loss; global Önance uncertainty multiplier.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mos:moswps:2021-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Simon Angus (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.