Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2021s-29.html
   My bibliography  Save this paper

Profit Effects of Consumers’ Identity Management: a dynamic model

Author

Listed:
  • Didier Laussel
  • Ngo Van Long
  • Joana Resende
Abstract
We consider a non-durable good monopoly that collects data on its customers in order to profile them and subsequently practice price discrimination on returning customers. The monopolist’s price discrimination scheme is leaky, in the sense that an endogenous fraction of consumers chooses to incur a privacy cost to become "active", i.e., to be able to conceal their identity when they return in the following periods. We characterize the Markov Perfect Equilibrium of the game. We find that, regardless of the accuracy of data on their customers, managers adjust their pricing and market expansion strategies to the presence of active customers in the following way: (i) reduce the pace at which introductory price falls over time, and (ii) strategically guarantee that market expansion is incomplete. The equilibrium number of passive customers in the market is found to be increasing in the level of the privacy cost. Investigating the impact of customers’ identity management on profits, we find that the monopoly profit is a U-shaped function of the privacy cost whatever the degree of the monopolist’s information accuracy. Still, the profit effects of consumers’ identity management choices are shown to depend on the monopolist’s profiling capabilities. Two customer profiling structures are compared. In the case of full information acquisition (FIA), the firm can practice personalized pricing on returning passive customers, while in the case of purchase history information (PHI), it has only enough information for group pricing. We show that in the FIA case, the monopoly equilibrium profit is globally an increasing function of the privacy cost while in the PHI case, it is almost always a globally decreasing function of it. Nous considérons un monopole de biens non durables qui collecte des données sur ses clients afin de les profiler et pratique ensuite une discrimination par les prix sur les clients qui reviennent. Le système de discrimination par les prix du monopoleur est fuyant, en ce sens qu'une fraction endogène de consommateurs choisit d'encourir un coût d’anonymisation pour devenir « actif », c'est-à-dire pour pouvoir dissimuler son identité à son retour dans les périodes suivantes. Nous caractérisons l'équilibre parfait de Markov du jeu. Nous constatons que, quelle que soit l'exactitude des données sur leurs clients, les gestionnaires ajustent leurs stratégies de tarification et d'expansion du marché à la présence de clients actifs de la manière suivante : (i) réduire le rythme auquel le prix de lancement baisse au fil du temps, et (ii) garantir stratégiquement que l'expansion du marché est incomplète. On constate que le nombre d'équilibre de clients passifs sur le marché est une fonction croissante du coût d’anonymisation. En étudiant l'impact de la gestion de l'identité des clients sur les profits, nous constatons que le profit du monopole est une fonction en forme de U du coût d’anonymisation, quel que soit le degré d'exactitude des informations du monopoleur. Pourtant, les effets sur le profit des choix de gestion de l'identité des consommateurs dépendent des capacités de profilage du monopoleur. Deux structures de profilage des clients sont comparées. Dans le cas de l'acquisition d'informations complètes (FIA), l'entreprise peut pratiquer une tarification personnalisée sur les clients passifs, tandis que dans le cas des informations sur l'historique des achats (PHI), elle ne dispose que d'informations suffisantes pour la tarification de groupe. Nous montrons que dans le cas FIA, le profit d'équilibre de monopole est globalement une fonction croissante du coût d’anonymisation alors que dans le cas PHI, il en est presque toujours une fonction globalement décroissante.

Suggested Citation

  • Didier Laussel & Ngo Van Long & Joana Resende, 2021. "Profit Effects of Consumers’ Identity Management: a dynamic model," CIRANO Working Papers 2021s-29, CIRANO.
  • Handle: RePEc:cir:cirwor:2021s-29
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2021s-29.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rodrigo Montes & Wilfried Sand-Zantman & Tommaso Valletti, 2019. "The Value of Personal Information in Online Markets with Endogenous Privacy," Management Science, INFORMS, vol. 65(3), pages 1342-1362, March.
    2. Anita Rao, 2015. "Online Content Pricing: Purchase and Rental Markets," Marketing Science, INFORMS, vol. 34(3), pages 430-451, May.
    3. Belleflamme, Paul & Vergote, Wouter, 2016. "Monopoly price discrimination and privacy: The hidden cost of hiding," Economics Letters, Elsevier, vol. 149(C), pages 141-144.
    4. Drew Fudenberg & Jean Tirole, 2000. "Customer Poaching and Brand Switching," RAND Journal of Economics, The RAND Corporation, vol. 31(4), pages 634-657, Winter.
    5. Zhijun Chen & Chongwoo Choe & Noriaki Matsushima, 2020. "Competitive Personalized Pricing," Management Science, INFORMS, vol. 66(9), pages 4003-4023, September.
    6. Esteves, Rosa-Branca, 2010. "Pricing with customer recognition," International Journal of Industrial Organization, Elsevier, vol. 28(6), pages 669-681, November.
    7. Alessandro Acquisti & Hal R. Varian, 2005. "Conditioning Prices on Purchase History," Marketing Science, INFORMS, vol. 24(3), pages 367-381, May.
    8. Gehrig, Thomas & Shy, Oz & Stenbacka, Rune, 2011. "History-based price discrimination and entry in markets with switching costs: A welfare analysis," European Economic Review, Elsevier, vol. 55(5), pages 732-739, June.
    9. Shota Ichihashi, 2020. "Online Privacy and Information Disclosure by Consumers," American Economic Review, American Economic Association, vol. 110(2), pages 569-595, February.
    10. Alessandro Acquisti & Curtis Taylor & Liad Wagman, 2016. "The Economics of Privacy," Journal of Economic Literature, American Economic Association, vol. 54(2), pages 442-492, June.
    11. Simon Anderson & Alicia Baik & Nathan Larson, 2023. "Price Discrimination in the Information Age: Prices, Poaching, and Privacy with Personalized Targeted Discounts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2085-2115.
    12. Bleier, Alexander & Goldfarb, Avi & Tucker, Catherine, 2020. "Consumer privacy and the future of data-based innovation and marketing," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 466-480.
    13. J. Miguel Villas-Boas, 2004. "Price Cycles in Markets with Customer Recognition," RAND Journal of Economics, The RAND Corporation, vol. 35(3), pages 486-501, Autumn.
    14. Yongmin Chen & Jason Pearcy, 2010. "Dynamic pricing: when to entice brand switching and when to reward consumer loyalty," RAND Journal of Economics, RAND Corporation, vol. 41(4), pages 674-685, December.
    15. Carroni, Elias, 2016. "Competitive customer poaching with asymmetric firms," International Journal of Industrial Organization, Elsevier, vol. 48(C), pages 173-206.
    16. Laussel, Didier & Long, Ngo Van & Resende, Joana, 2019. "The Curse of Knowledge: Having Access to Customer Information Can be Detrimental to Monopoly’s Profit," Discussion paper series HIAS-E-93, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    17. Vincent Conitzer & Curtis R. Taylor & Liad Wagman, 2012. "Hide and Seek: Costly Consumer Privacy in a Market with Repeat Purchases," Marketing Science, INFORMS, vol. 31(2), pages 277-292, March.
    18. Akan, Mustafa & Ata, Barış & Dana, James D., 2015. "Revenue management by sequential screening," Journal of Economic Theory, Elsevier, vol. 159(PB), pages 728-774.
    19. Kenneth S. Corts, 1998. "Third-Degree Price Discrimination in Oligopoly: All-Out Competition and Strategic Commitment," RAND Journal of Economics, The RAND Corporation, vol. 29(2), pages 306-323, Summer.
    20. Yongmin Chen, 1997. "Paying Customers to Switch," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 6(4), pages 877-897, December.
    21. Thomas Gehrig & Oz Shy & Rune Stenbacka, 2012. "A Welfare Evaluation of History-Based Price Discrimination," Journal of Industry, Competition and Trade, Springer, vol. 12(4), pages 373-393, December.
    22. Chongwoo Choe & Stephen King & Noriaki Matsushima, 2018. "Pricing with Cookies: Behavior-Based Price Discrimination and Spatial Competition," Management Science, INFORMS, vol. 64(12), pages 5669-5687, December.
    23. Anderson, Simon & Baik, Alicia & Larson, Nathan, 2015. "Personalized pricing and advertising: An asymmetric equilibrium analysis," Games and Economic Behavior, Elsevier, vol. 92(C), pages 53-73.
    24. Laussel, Didier & Long, Ngo Van & Resende, Joana, 2020. "Quality and price personalization under customer recognition: A dynamic monopoly model with contrasting equilibria," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    25. Esteves, Rosa-Branca, 2009. "Price discrimination with partial information: Does it pay off?," Economics Letters, Elsevier, vol. 105(1), pages 28-31, October.
    26. Jentzsch, Nicola, 2016. "State-of-the-Art of the Economics of Cyber-Security and Privacy," EconStor Research Reports 126223, ZBW - Leibniz Information Centre for Economics.
    27. Curtis R. Taylor, 2004. "Consumer Privacy and the Market for Customer Information," RAND Journal of Economics, The RAND Corporation, vol. 35(4), pages 631-650, Winter.
    28. Ramon Casadesus-Masanell & Andres Hervas-Drane, 2015. "Competing with Privacy," Management Science, INFORMS, vol. 61(1), pages 229-246, January.
    29. J. Miguel Villas-Boas, 1999. "Dynamic Competition with Customer Recognition," RAND Journal of Economics, The RAND Corporation, vol. 30(4), pages 604-631, Winter.
    30. Stole, Lars A., 2007. "Price Discrimination and Competition," Handbook of Industrial Organization, in: Mark Armstrong & Robert Porter (ed.), Handbook of Industrial Organization, edition 1, volume 3, chapter 34, pages 2221-2299, Elsevier.
    31. Peitz, Martin & Waldfogel, Joel, 2012. "The Oxford Handbook of the Digital Economy," OUP Catalogue, Oxford University Press, number 9780195397840.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Pino, 2022. "The microeconomics of data – a survey," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 49(3), pages 635-665, September.
    2. Didier Laussel & Ngo V. Long & Joana Resende, 2020. "The curse of knowledge: having access to customer information can reduce monopoly profits," RAND Journal of Economics, RAND Corporation, vol. 51(3), pages 650-675, September.
    3. Didier Laussel & Ngo Van Long & Joana Resende, 2022. "Dynamic monopoly and consumers profiling accuracy," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(3), pages 579-608, August.
    4. Zhijun Chen & Chongwoo Choe & Noriaki Matsushima, 2020. "Competitive Personalized Pricing," Management Science, INFORMS, vol. 66(9), pages 4003-4023, September.
    5. Rodrigo Montes & Wilfried Sand-Zantman & Tommaso Valletti, 2019. "The Value of Personal Information in Online Markets with Endogenous Privacy," Management Science, INFORMS, vol. 65(3), pages 1342-1362, March.
    6. Masuyama, Ryo, 2023. "Endogenous privacy and heterogeneous price sensitivity," MPRA Paper 117316, University Library of Munich, Germany.
    7. Esteves, Rosa-Branca & Resende, Joana, 2019. "Personalized pricing and advertising: Who are the winners?," International Journal of Industrial Organization, Elsevier, vol. 63(C), pages 239-282.
    8. Florian Morath & Johannes Münster, 2018. "Online Shopping and Platform Design with Ex Ante Registration Requirements," Management Science, INFORMS, vol. 64(1), pages 360-380, January.
    9. Shuaicheng Liu, 2024. "Privacy regulation in asymmetric environments," Journal of Regulatory Economics, Springer, vol. 66(2), pages 157-173, December.
    10. Loertscher, Simon & Marx, Leslie M., 2020. "Digital monopolies: Privacy protection or price regulation?," International Journal of Industrial Organization, Elsevier, vol. 71(C).
    11. Dengler, Sebastian & Prüfer, Jens, 2021. "Consumers' privacy choices in the era of big data," Games and Economic Behavior, Elsevier, vol. 130(C), pages 499-520.
    12. Li, Jianpei & Zhang, Wanzhu, 2022. "Behavior-based pricing and signaling of product quality," MPRA Paper 120263, University Library of Munich, Germany, revised 03 Jan 2023.
    13. Laussel, Didier & Long, Ngo Van & Resende, Joana, 2019. "The Curse of Knowledge: Having Access to Customer Information Can be Detrimental to Monopoly’s Profit," Discussion paper series HIAS-E-93, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    14. Didier Laussel & Joana Resende, 2022. "When Is Product Personalization Profit-Enhancing? A Behavior-Based Discrimination Model," Management Science, INFORMS, vol. 68(12), pages 8872-8888, December.
    15. Bernard Caillaud & Romain De Nijs, 2014. "Strategic Loyalty Reward in Dynamic Price Discrimination," Marketing Science, INFORMS, vol. 33(5), pages 725-742, September.
    16. Dubus, Antoine, 2024. "Behavior-based algorithmic pricing," Information Economics and Policy, Elsevier, vol. 66(C).
    17. T. Tony Ke & K. Sudhir, 2023. "Privacy Rights and Data Security: GDPR and Personal Data Markets," Management Science, INFORMS, vol. 69(8), pages 4389-4412, August.
    18. Li, Jianpei & Zhang, Wanzhu, 2022. "Behavior-based price discrimination and signaling of product quality," MPRA Paper 111572, University Library of Munich, Germany.
    19. Clavorà Braulin, Francesco, 2023. "The effects of personal information on competition: Consumer privacy and partial price discrimination," International Journal of Industrial Organization, Elsevier, vol. 87(C).
    20. Stefano Colombo & Clara Graziano & Aldo Pignataro, 2023. "Personalized Pricing with Imperfect Customer Recognition," CESifo Working Paper Series 10455, CESifo.

    More about this item

    Keywords

    Consumers’ Identity Management; Anonymization; Intertemporal Price Discrimination; Monopoly; Information Structures; gestion de l'identité des consommateurs; Anonymisation; Discrimination des prix; Monopole; Structures d'informations;
    All these keywords.

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D42 - Microeconomics - - Market Structure, Pricing, and Design - - - Monopoly
    • L12 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Monopoly; Monopolization Strategies
    • L15 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Information and Product Quality

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2021s-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.