Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1306.2834.html
   My bibliography  Save this paper

Bayesian inference for CoVaR

Author

Listed:
  • Mauro Bernardi
  • Ghislaine Gayraud
  • Lea Petrella
Abstract
Recent financial disasters emphasised the need to investigate the consequence associated with the tail co-movements among institutions; episodes of contagion are frequently observed and increase the probability of large losses affecting market participants' risk capital. Commonly used risk management tools fail to account for potential spillover effects among institutions because they provide individual risk assessment. We contribute to analyse the interdependence effects of extreme events providing an estimation tool for evaluating the Conditional Value-at-Risk (CoVaR) defined as the Value-at-Risk of an institution conditioned on another institution being under distress. In particular, our approach relies on Bayesian quantile regression framework. We propose a Markov chain Monte Carlo algorithm exploiting the Asymmetric Laplace distribution and its representation as a location-scale mixture of Normals. Moreover, since risk measures are usually evaluated on time series data and returns typically change over time, we extend the CoVaR model to account for the dynamics of the tail behaviour. Application on U.S. companies belonging to different sectors of the Standard and Poor's Composite Index (S&P500) is considered to evaluate the marginal contribution to the overall systemic risk of each individual institution

Suggested Citation

  • Mauro Bernardi & Ghislaine Gayraud & Lea Petrella, 2013. "Bayesian inference for CoVaR," Papers 1306.2834, arXiv.org, revised Nov 2013.
  • Handle: RePEc:arx:papers:1306.2834
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1306.2834
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James W. Taylor, 2008. "Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 382-406, Summer.
    2. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    3. Gerlach, Richard H. & Chen, Cathy W. S. & Chan, Nancy Y. C., 2011. "Bayesian Time-Varying Quantile Forecasting for Value-at-Risk in Financial Markets," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 481-492.
    4. Carter, C.K. & Kohn, R., "undated". "Markov Chain Monte Carlo in Conditionally Gaussian State Space Models," Statistics Working Paper _003, Australian Graduate School of Management.
    5. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, October.
    6. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    7. Sylvia Frühwirth‐Schnatter, 1994. "Data Augmentation And Dynamic Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 183-202, March.
    8. van Dyk, David A. & Park, Taeyoung, 2008. "Partially Collapsed Gibbs Samplers: Theory and Methods," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 790-796, June.
    9. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    10. Chao, Shih-Kang & Härdle, Wolfgang Karl & Wang, Weining, 2012. "Quantile regression in risk calibration," SFB 649 Discussion Papers 2012-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    12. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    13. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
    14. Hideo Kozumi & Genya Kobayashi, 2009. "Gibbs Sampling Methods for Bayesian Quantile Regression," Discussion Papers 2009-02, Kobe University, Graduate School of Business Administration.
    15. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    16. Schaumburg, Julia, 2010. "Predicting extreme VaR: Nonparametric quantile regression with refinements from extreme value theory," SFB 649 Discussion Papers 2010-009, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    18. De Rossi, Giuliano & Harvey, Andrew, 2009. "Quantiles, expectiles and splines," Journal of Econometrics, Elsevier, vol. 152(2), pages 179-185, October.
    19. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    20. repec:fip:fedhpr:y:2010:i:may:p:65-71 is not listed on IDEAS
    21. Cheng-Few Lee & Jung-Bin Su, 2012. "Alternative statistical distributions for estimating value-at-risk: theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 309-331, October.
    22. Adams, Zeno & Füss, Roland & Gropp, Reint, 2014. "Spillover Effects among Financial Institutions: A State-Dependent Sensitivity Value-at-Risk Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 575-598, June.
    23. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
    24. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    25. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    26. Viral Acharya & Robert Engle & Matthew Richardson, 2012. "Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks," American Economic Review, American Economic Association, vol. 102(3), pages 59-64, May.
    27. Kottas A. & Gelfand A.E., 2001. "Bayesian Semiparametric Median Regression Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1458-1468, December.
    28. Athanasios Kottas & Milovan Krnjajić, 2009. "Bayesian Semiparametric Modelling in Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 297-319, June.
    29. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    30. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    2. Markus Brunnermeier & Simon Rother & Isabel Schnabel & Itay Goldstein, 2020. "Asset Price Bubbles and Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 33(9), pages 4272-4317.
    3. Ayoub Kyoud & Cherif El Msiyah & Jaouad Madkour, 2023. "Modelling Systemic Risk in Morocco’s Banking System," IJFS, MDPI, vol. 11(2), pages 1-16, May.
    4. Gabriela Anghelache & Dumitru-Cristian Oanea, 2014. "Main Romanian Commercial Banks’ Systemic Risk during Financial Crisis: a CoVar Approach," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 6(2), pages 069-080, December.
    5. Marina Resta, 2016. "VaRSOM: A Tool to Monitor Markets' Stability Based on Value at Risk and Self‐Organizing Maps," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(1-2), pages 47-64, January.
    6. Bernardi, Mauro & Bignozzi, Valeria & Petrella, Lea, 2017. "On the Lp-quantiles for the Student t distribution," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 77-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
    2. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    3. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    4. Antonio Rubia Serrano & Lidia Sanchis-Marco, 2015. "Measuring Tail-Risk Cross-Country Exposures in the Banking Industry," Working Papers. Serie AD 2015-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    5. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    6. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
    7. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    8. repec:hum:wpaper:sfb649dp2014-021 is not listed on IDEAS
    9. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
    10. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    11. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    12. Zeng, Zijian & Li, Meng, 2021. "Bayesian median autoregression for robust time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1000-1010.
    13. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
    14. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    15. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    16. Chao, Shih-Kang & Härdle, Wolfgang Karl & Wang, Weining, 2012. "Quantile regression in risk calibration," SFB 649 Discussion Papers 2012-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    18. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    19. Drakos, Anastassios A. & Kouretas, Georgios P., 2015. "Bank ownership, financial segments and the measurement of systemic risk: An application of CoVaR," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 127-140.
    20. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
    21. Zhijie Xiao & Roger Koenker, 2009. "Conditional Quantile Estimation for GARCH Models," Boston College Working Papers in Economics 725, Boston College Department of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1306.2834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.