(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(Th
(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(Th
(This abstract was borrowed from another version of this item.)">
Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2017012.html
   My bibliography  Save this paper

Hedging of options in presence of jump clustering

Author

Listed:
  • HAINAUT, D.
  • MORAUX, F.
Abstract
This paper analyzes the efficiency of hedging strategies for stock options in the presence of jump clustering. In the proposed model, the asset is ruled by a jump-diffusion process, wherein the arrival of jumps is correlated to the amplitude of past shocks. This feature adds feedback effects and time heterogeneity to the initial jump diffusion. After a presentation of the main properties of the process, a numerical method for options pricing is proposed. Next, we develop four hedging policies, minimizing the variance of the final wealth. These strategies are based on first- and second-order approximations of option prices. The hedging instrument is either the underlying asset or another option. The performance of these hedges is measured by simulations for put and call options, with a model fitted to the Standard & Poor's 500.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(Th
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Hainaut, D. & Moraux, F., 2017. "Hedging of options in presence of jump clustering," LIDAM Discussion Papers ISBA 2017012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2017012
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    2. Olivier Le Courtois & François Quittard-Pinon & Xiaoshan Su, 2020. "Pricing and hedging defaultable participating contracts with regime switching and jump risk," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 303-339, June.
    3. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    4. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Song, Shiyu, 2024. "The valuation of arithmetic Asian options with mean reversion and jump clustering," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    6. Charles Guy Njike Leunga & Donatien Hainaut, 2024. "Affine Heston model style with self-exciting jumps and long memory," Annals of Finance, Springer, vol. 20(1), pages 1-43, March.
    7. Riccardo Brignone & Carlo Sgarra, 2020. "Asian options pricing in Hawkes-type jump-diffusion models," Annals of Finance, Springer, vol. 16(1), pages 101-119, March.
    8. Hui Qu & Tianyang Wang & Peng Shangguan & Mengying He, 2024. "Revisiting the puzzle of jumps in volatility forecasting: The new insights of high‐frequency jump intensity," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 218-251, February.
    9. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    10. Njike Leunga, Charles G. & Hainaut, Donatien, 2022. "Long memory self-exciting jump diffusion for asset prices modeling," LIDAM Discussion Papers ISBA 2022003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2017012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.