Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v069i12.html
   My bibliography  Save this article

Statistical Inference for Partially Observed Markov Processes via the R Package pomp

Author

Listed:
  • King, Aaron A.
  • Nguyen, Dao
  • Ionides, Edward L.
Abstract
Partially observed Markov process (POMP) models, also known as hidden Markov models or state space models, are ubiquitous tools for time series analysis. The R package pomp provides a very flexible framework for Monte Carlo statistical investigations using nonlinear, non-Gaussian POMP models. A range of modern statistical methods for POMP models have been implemented in this framework including sequential Monte Carlo, iterated filtering, particle Markov chain Monte Carlo, approximate Bayesian computation, maximum synthetic likelihood estimation, nonlinear forecasting, and trajectory matching. In this paper, we demonstrate the application of these methodologies using some simple toy problems. We also illustrate the specification of more complex POMP models, using a nonlinear epidemiological model with a discrete population, seasonality, and extra-demographic stochasticity. We discuss the specification of user-defined models and the development of additional methods within the programming environment provided by pomp.

Suggested Citation

  • King, Aaron A. & Nguyen, Dao & Ionides, Edward L., 2016. "Statistical Inference for Partially Observed Markov Processes via the R Package pomp," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i12).
  • Handle: RePEc:jss:jstsof:v:069:i12
    DOI: http://hdl.handle.net/10.18637/jss.v069.i12
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v069i12/v69i12.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v069i12/pomp_1.4.1.1.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v069i12/v69i12-replication.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v069.i12?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bretó, Carles & Ionides, Edward L., 2011. "Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems," DES - Working Papers. Statistics and Econometrics. WS ws111914, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Bretó, Carles & Ionides, Edward L., 2011. "Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2571-2591, November.
    3. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 63-84, Suppl. De.
    4. Aaron A. King & Edward L. Ionides & Mercedes Pascual & Menno J. Bouma, 2008. "Inapparent infections and cholera dynamics," Nature, Nature, vol. 454(7206), pages 877-880, August.
    5. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    6. AfDB AfDB, 2010. "Working Paper Series – Author Guidelines," Working Paper Series 357, African Development Bank.
    7. repec:arz:wpaper:eres2011-214 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lux, Thomas, 2022. "Inference for Nonlinear State Space Models: A Comparison of Different Methods applied to Markov-Switching Multifractal Models," Econometrics and Statistics, Elsevier, vol. 21(C), pages 69-95.
    2. Maria Masotti & Lin Zhang & Ethan Leng & Gregory J. Metzger & Joseph S. Koopmeiners, 2023. "A novel Bayesian functional spatial partitioning method with application to prostate cancer lesion detection using MRI," Biometrics, The International Biometric Society, vol. 79(2), pages 604-615, June.
    3. Oscar García, 2019. "Estimating reducible stochastic differential equations by conversion to a least-squares problem," Computational Statistics, Springer, vol. 34(1), pages 23-46, March.
    4. Jonathan Fintzi & Jon Wakefield & Vladimir N. Minin, 2022. "A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts," Biometrics, The International Biometric Society, vol. 78(4), pages 1530-1541, December.
    5. Johannes Bracher & Leonhard Held, 2021. "A marginal moment matching approach for fitting endemic‐epidemic models to underreported disease surveillance counts," Biometrics, The International Biometric Society, vol. 77(4), pages 1202-1214, December.
    6. Heather Williams & Andrew Scharf & Anna R. Ryba & D. Ryan Norris & Daniel J. Mennill & Amy E. M. Newman & Stéphanie M. Doucet & Julie C. Blackwood, 2022. "Cumulative cultural evolution and mechanisms for cultural selection in wild bird songs," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Lawrence W Sheppard & Emma J Defriez & Philip C Reid & Daniel C Reuman, 2019. "Synchrony is more than its top-down and climatic parts: interacting Moran effects on phytoplankton in British seas," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-25, March.
    8. Michael Briga & Elizabeth Goult & Tobias S. Brett & Pejman Rohani & Matthieu Domenech de Cellès, 2024. "Maternal pertussis immunization and the blunting of routine vaccine effectiveness: a meta-analysis and modeling study," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Driver, Charles C. & Oud, Johan H. L. & Voelkle, Manuel C., 2017. "Continuous Time Structural Equation Modeling with R Package ctsem," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i05).
    10. Eslami, Keyvan & Lee, Hyunju, 2024. "Overreaction and the value of information in a pandemic," European Economic Review, Elsevier, vol. 161(C).
    11. King, Aaron A. & Lin, Qianying & Ionides, Edward L., 2022. "Markov genealogy processes," Theoretical Population Biology, Elsevier, vol. 143(C), pages 77-91.
    12. Tobias S Brett & Eamon B O’Dea & Éric Marty & Paige B Miller & Andrew W Park & John M Drake & Pejman Rohani, 2018. "Anticipating epidemic transitions with imperfect data," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-18, June.
    13. Lux, Thomas, 2018. "Inference for nonlinear state space models: A comparison of different methods applied to Markov-switching multifractal models," Economics Working Papers 2018-07, Christian-Albrechts-University of Kiel, Department of Economics.
    14. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bretó, Carles, 2012. "Time changes that result in multiple points in continuous-time Markov counting processes," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2229-2234.
    2. Bretó, Carles, 2014. "Trajectory composition of Poisson time changes and Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 91-98.
    3. King, Aaron A. & Lin, Qianying & Ionides, Edward L., 2022. "Markov genealogy processes," Theoretical Population Biology, Elsevier, vol. 143(C), pages 77-91.
    4. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    5. Bretó, Carles, 2012. "On the infinitesimal dispersion of multivariate Markov counting systems," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 720-725.
    6. Tobias S Brett & Eamon B O’Dea & Éric Marty & Paige B Miller & Andrew W Park & John M Drake & Pejman Rohani, 2018. "Anticipating epidemic transitions with imperfect data," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-18, June.
    7. Jonathan Fintzi & Jon Wakefield & Vladimir N. Minin, 2022. "A linear noise approximation for stochastic epidemic models fit to partially observed incidence counts," Biometrics, The International Biometric Society, vol. 78(4), pages 1530-1541, December.
    8. Chéron, Arnaud & Hairault, Jean-Olivier & Langot, François, 2004. "Labor Market Institutions and the Employment-Productivity Trade-Off: A Wage Posting Approach," IZA Discussion Papers 1364, Institute of Labor Economics (IZA).
    9. Peter Fuleky & Eric Zivot, 2014. "Indirect inference based on the score," Econometrics Journal, Royal Economic Society, vol. 17(3), pages 383-393, October.
    10. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Yong Bao & Xiaotian Liu & Lihong Yang, 2020. "Indirect Inference Estimation of Spatial Autoregressions," Econometrics, MDPI, vol. 8(3), pages 1-26, September.
    12. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    13. Robert E. Hall, 2002. "Industry Dynamics with Adjustment Costs," NBER Working Papers 8849, National Bureau of Economic Research, Inc.
    14. Simões, Oscar R. & Marçal, Emerson Fernandes, 2012. "Agregação temporal e não-linearidade afetam os testes da paridade do poder de compra: Evidência a partir de dados brasileiros," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 66(3), October.
    15. Christian Gouriéroux & Alain Monfort, 2017. "Composite Indirect Inference with Application," Working Papers 2017-07, Center for Research in Economics and Statistics.
    16. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    17. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    18. Minford, Patrick & Ou, Zhirong, 2013. "Taylor Rule or optimal timeless policy? Reconsidering the Fed's behavior since 1982," Economic Modelling, Elsevier, vol. 32(C), pages 113-123.
    19. Vo Le & Kent Matthews & David Meenagh & Patrick Minford & Zhiguo Xiao, 2014. "Banking and the Macroeconomy in China: A Banking Crisis Deferred?," Open Economies Review, Springer, vol. 25(1), pages 123-161, February.
    20. Liu, Chunping & Minford, Patrick, 2014. "Comparing behavioural and rational expectations for the US post-war economy," Economic Modelling, Elsevier, vol. 43(C), pages 407-415.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:069:i12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.