Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2338-d855300.html
   My bibliography  Save this article

Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle

Author

Listed:
  • Nicolás Magner

    (Facultad de Administración y Economía, Universidad Diego Portales, Santiago 8370109, Chile)

  • Nicolás Hardy

    (Facultad de Administración y Economía, Universidad Diego Portales, Santiago 8370109, Chile)

Abstract
This paper tests the random walk hypothesis in the cryptocurrency market. Based on the well-known Meese–Rogoff puzzle, we evaluate whether cryptocurrency returns are predictable or not. For this purpose, we conduct in-sample and out-of-sample analyses to examine the forecasting power of our model built with autoregressive components and lagged returns of BITCOIN, compared with the random walk benchmark. To this end, we considered the 13 major cryptocurrencies between 2018 and 2022. Our results indicate that our models significantly outperform the random walk benchmark. In particular, cryptocurrencies tend to be far more persistent than regular exchange rates, and BITCOIN (BTC) seems to improve the predictive accuracy of our models for some cryptocurrencies. Furthermore, while the predictive performance is time varying, we find predictive ability in different regimes before and during the pandemic crisis. We think that these results are helpful to policymakers and investors because they open a new perspective on cryptocurrency investing strategies and regulations to improve financial stability.

Suggested Citation

  • Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2338-:d:855300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schilling, Linda & Uhlig, Harald, 2019. "Some simple bitcoin economics," Journal of Monetary Economics, Elsevier, vol. 106(C), pages 16-26.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Harrison Hong & Terence Lim & Jeremy C. Stein, 2000. "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies," Journal of Finance, American Finance Association, vol. 55(1), pages 265-295, February.
    4. Rossi, Barbara, 2005. "Optimal Tests For Nested Model Selection With Underlying Parameter Instability," Econometric Theory, Cambridge University Press, vol. 21(5), pages 962-990, October.
    5. Richard Meese & Kenneth Rogoff, 1983. "The Out-of-Sample Failure of Empirical Exchange Rate Models: Sampling Error or Misspecification?," NBER Chapters, in: Exchange Rates and International Macroeconomics, pages 67-112, National Bureau of Economic Research, Inc.
    6. Atsalakis, George S. & Atsalaki, Ioanna G. & Pasiouras, Fotios & Zopounidis, Constantin, 2019. "Bitcoin price forecasting with neuro-fuzzy techniques," European Journal of Operational Research, Elsevier, vol. 276(2), pages 770-780.
    7. Melvin, Michael & Prins, John & Shand, Duncan, 2013. "Forecasting Exchange Rates: an Investor Perspective," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 721-750, Elsevier.
    8. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    9. Jinan Liu & Apostolos Serletis, 2019. "Volatility in the Cryptocurrency Market," Open Economies Review, Springer, vol. 30(4), pages 779-811, September.
    10. Charles Engel & Nelson C. Mark & Kenneth D. West, 2008. "Exchange Rate Models Are Not as Bad as You Think," NBER Chapters, in: NBER Macroeconomics Annual 2007, Volume 22, pages 381-441, National Bureau of Economic Research, Inc.
    11. Barbara Rossi, 2021. "Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them," Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
    12. Lin William Cong & Zhiguo He & Jiasun Li & Wei Jiang, 2021. "Decentralized Mining in Centralized Pools [Concentrating on the fall of the labor share]," The Review of Financial Studies, Society for Financial Studies, vol. 34(3), pages 1191-1235.
    13. Y. Bai, 2014. "Country factors in stock returns: reconsidering the basic method," Applied Financial Economics, Taylor & Francis Journals, vol. 24(13), pages 871-888, July.
    14. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    15. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1145-1194.
    16. Ciaian, Pavel & Rajcaniova, Miroslava & Kancs, d'Artis, 2018. "Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 173-195.
    17. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    18. Nicolás S. Magner & Jaime F. Lavin & Mauricio A. Valle & Nicolás Hardy, 2020. "The Volatility Forecasting Power of Financial Network Analysis," Complexity, Hindawi, vol. 2020, pages 1-17, September.
    19. Jinan Liu & Apostolos Serletis, 2019. "Volatility in the Cryptocurrency Market," Open Economies Review, Springer, vol. 30(4), pages 779-811, September.
    20. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    21. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    22. Pablo Pincheira Brown & Nicolás Hardy, 2024. "The mean squared prediction error paradox," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2298-2321, September.
    23. repec:bla:jfinan:v:53:y:1998:i:6:p:1839-1885 is not listed on IDEAS
    24. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    25. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    26. Pasquale Della Corte & Lucio Sarno & Ilias Tsiakas, 2009. "An Economic Evaluation of Empirical Exchange Rate Models," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3491-3530, September.
    27. Moosa, Imad & Burns, Kelly, 2014. "The unbeatable random walk in exchange rate forecasting: Reality or myth?," Journal of Macroeconomics, Elsevier, vol. 40(C), pages 69-81.
    28. Pablo Pincheira & Nicolas Hardy & Andrea Bentancor, 2022. "A Simple Out-of-Sample Test of Predictability against the Random Walk Benchmark," Mathematics, MDPI, vol. 10(2), pages 1-20, January.
    29. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    30. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia, 2005. "Empirical exchange rate models of the nineties: Are any fit to survive?," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1150-1175, November.
    31. Pablo Pincheira Brown & Nicolás Hardy, 2024. "Correlation‐based tests of predictability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1835-1858, September.
    32. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    33. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    34. Michael Sockin & Wei Xiong, 2020. "A Model of Cryptocurrencies," NBER Working Papers 26816, National Bureau of Economic Research, Inc.
    35. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    36. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    37. Pincheira, Pablo & Hardy, Nicolás, 2021. "Forecasting aluminum prices with commodity currencies," Resources Policy, Elsevier, vol. 73(C).
    38. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    39. Pincheira, Pablo M. & West, Kenneth D., 2016. "A comparison of some out-of-sample tests of predictability in iterated multi-step-ahead forecasts," Research in Economics, Elsevier, vol. 70(2), pages 304-319.
    40. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    41. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    42. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    43. Imad A. Moosa & Kelly Burns, 2015. "The Meese-Rogoff Puzzle," Palgrave Macmillan Books, in: Demystifying the Meese-Rogoff Puzzle, chapter 1, pages 1-13, Palgrave Macmillan.
    44. Ince, Onur & Molodtsova, Tanya, 2017. "Rationality and forecasting accuracy of exchange rate expectations: Evidence from survey-based forecasts," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 47(C), pages 131-151.
    45. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    46. Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2022. "The illusion of oil return predictability: The choice of data matters!," Journal of Banking & Finance, Elsevier, vol. 134(C).
    47. Corbet, Shaen & Eraslan, Veysel & Lucey, Brian & Sensoy, Ahmet, 2019. "The effectiveness of technical trading rules in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 31(C), pages 32-37.
    48. Anatolyev, Stanislav & Gerko, Alexander, 2005. "A Trading Approach to Testing for Predictability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 455-461, October.
    49. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    50. Camilla Muglia & Luca Santabarbara & Stefano Grassi, 2019. "Is Bitcoin a Relevant Predictor of Standard & Poor’s 500?," JRFM, MDPI, vol. 12(2), pages 1-10, May.
    51. Yae, James & Tian, George Zhe, 2022. "Out-of-sample forecasting of cryptocurrency returns: A comprehensive comparison of predictors and algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    52. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    53. Meese, R. & Rogoff, K., 1988. "Was It Real? The Exchange Rate-Interest Differential Ralation Over The Modern Floating-Rate Period," Working papers 368, Wisconsin Madison - Social Systems.
    54. Paolo Giudici & Gloria Polinesi, 2021. "Crypto price discovery through correlation networks," Annals of Operations Research, Springer, vol. 299(1), pages 443-457, April.
    55. Rossi, Barbara, 2006. "Are Exchange Rates Really Random Walks? Some Evidence Robust To Parameter Instability," Macroeconomic Dynamics, Cambridge University Press, vol. 10(1), pages 20-38, February.
    56. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
    57. Pincheira, Pablo & Hardy, Nicolas, 2018. "The predictive relationship between exchange rate expectations and base metal prices," MPRA Paper 89423, University Library of Munich, Germany.
    58. Wilko Bolt & Maarten R.C. Van Oordt, 2020. "On the Value of Virtual Currencies," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(4), pages 835-862, June.
    59. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    60. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    61. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    62. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    63. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    64. Nikolay Miller & Yiming Yang & Bruce Sun & Guoyi Zhang, 2019. "Identification of technical analysis patterns with smoothing splines for bitcoin prices," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(12), pages 2289-2297, September.
    65. Timmermann, Allan, 2008. "Reply to the discussion of Elusive Return Predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 29-30.
    66. Lin William Cong & Ye Li & Neng Wang, 2021. "Tokenomics: Dynamic Adoption and Valuation [The demand of liquid assets with uncertain lumpy expenditures]," The Review of Financial Studies, Society for Financial Studies, vol. 34(3), pages 1105-1155.
    67. Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
    68. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    69. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    70. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    71. Harrison Hong & Jeremy C. Stein, 1999. "A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets," Journal of Finance, American Finance Association, vol. 54(6), pages 2143-2184, December.
    72. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    73. Athey, Susan & Parashkevov, Ivo & Sarukkai, Vishnu & Xia, Jing, 2016. "Bitcoin Pricing, Adoption, and Usage: Theory and Evidence," Research Papers 3469, Stanford University, Graduate School of Business.
    74. Suhwan Ji & Jongmin Kim & Hyeonseung Im, 2019. "A Comparative Study of Bitcoin Price Prediction Using Deep Learning," Mathematics, MDPI, vol. 7(10), pages 1-20, September.
    75. Imad A. Moosa & Kelly Burns, 2015. "Demystifying the Meese-Rogoff Puzzle," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-137-45248-1, December.
    76. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    77. Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
    78. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    79. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    80. Adcock, Robert & Gradojevic, Nikola, 2019. "Non-fundamental, non-parametric Bitcoin forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    2. Nicolas S. Magner & Nicolás Hardy & Tiago Ferreira & Jaime F. Lavin, 2023. "“Agree to Disagree”: Forecasting Stock Market Implied Volatility Using Financial Report Tone Disagreement Analysis," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
    3. Hardy, Nicolás & Ferreira, Tiago & Quinteros, Maria J. & Magner, Nicolás S., 2023. "“Watch your tone!”: Forecasting mining industry commodity prices with financial report tone," Resources Policy, Elsevier, vol. 86(PA).
    4. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    5. Pablo Pincheira Brown & Nicolás Hardy, 2024. "The mean squared prediction error paradox," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2298-2321, September.
    6. Pablo Pincheira & Nicolás Hardy & Felipe Muñoz, 2021. "“Go Wild for a While!”: A New Test for Forecast Evaluation in Nested Models," Mathematics, MDPI, vol. 9(18), pages 1-28, September.
    7. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    8. Feng, Wenjun & Zhang, Zhengjun, 2023. "Currency exchange rate predictability: The new power of Bitcoin prices," Journal of International Money and Finance, Elsevier, vol. 132(C).
    9. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    10. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    11. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    12. Pincheira, Pablo & Hardy, Nicolas, 2020. "The Mean Squared Prediction Error Paradox: A summary," MPRA Paper 105020, University Library of Munich, Germany.
    13. Pincheira-Brown, Pablo & Neumann, Federico, 2020. "Can we beat the Random Walk? The case of survey-based exchange rate forecasts in Chile," Finance Research Letters, Elsevier, vol. 37(C).
    14. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    15. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    16. Pincheira, Pablo & Hardy, Nicolás & Muñoz, Felipe, 2021. ""Go wild for a while!": A new asymptotically Normal test for forecast evaluation in nested models," MPRA Paper 105368, University Library of Munich, Germany.
    17. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    18. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    19. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    20. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2338-:d:855300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.