Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v176y2022ics0040162521009021.html
   My bibliography  Save this article

At scale adoption of battery storage technology in Indian power industry: Enablers, frameworks and policies

Author

Listed:
  • Jindal, Abhinav
  • Shrimali, Gireesh
Abstract
India's envisages uptake of 450 Giga Watt (GW) of renewable energy capacity by 2030. The resulting system flexibility needs can be met by 50 GW of 4-hour energy storage. However, system flexibility has historically been met by coal power plants, and India also plans to install 50 GW of new coal power capacity during 2022–27. Our paper answers three related questions that would maximize deployment of battery storage with appropriate policy design. First, what is the cost-competitiveness of renewable energy and battery storage compared to new coal-based power? Second, what should be the high-level policy framework for ensuring necessary deployment of battery storage? Third, what should be the appropriate procurement mechanisms for battery storage along with renewable energy? To answer these questions, we first compare forecasted levelized cost of energy for renewable energy and battery storage with coal power, and then use two frameworks to investigate policies. Our findings are as follows. First, renewable energy and battery storage is cost-competitive over new coal starting 2022. Second, India should adopt a battery portfolio standard (BPS) that is linked to existing renewable portfolio standard (RPS). Third, India should adopt the renewable dispatchable generation (RDG) power purchase agreement (PPA) to ensure that multiple policy criteria are met.

Suggested Citation

  • Jindal, Abhinav & Shrimali, Gireesh, 2022. "At scale adoption of battery storage technology in Indian power industry: Enablers, frameworks and policies," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:tefoso:v:176:y:2022:i:c:s0040162521009021
    DOI: 10.1016/j.techfore.2021.121467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521009021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.121467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    2. Herrmann, J.K. & Savin, I., 2017. "Optimal policy identification: Insights from the German electricity market," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 71-90.
    3. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    4. Choi, Hyundo & Anadón, Laura Díaz, 2014. "The role of the complementary sector and its relationship with network formation and government policies in emerging sectors: The case of solar photovoltaics between 2001 and 2009," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 80-94.
    5. Gireesh Shrimali & Steffen Jenner & Felix Groba & Gabriel Chan & Joe Indvik, 2012. "Have State Renewable Portfolio Standards Really Worked?: Synthesizing Past Policy Assessments," Discussion Papers of DIW Berlin 1258, DIW Berlin, German Institute for Economic Research.
    6. Yin, Haitao & Powers, Nicholas, 2010. "Do state renewable portfolio standards promote in-state renewable generation[glottal stop]," Energy Policy, Elsevier, vol. 38(2), pages 1140-1149, February.
    7. Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
    8. Shrimali, Gireesh, 2021. "Managing power system flexibility in India via coal plants," Energy Policy, Elsevier, vol. 150(C).
    9. Versteeg, T. & Baumann, M.J. & Weil, M. & Moniz, A.B., 2017. "Exploring emerging battery technology for grid-connected energy storage with Constructive Technology Assessment," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 99-110.
    10. Ramit Debnath & Vibhor Mittal & Abhinav Jindal, 2020. "A review of challenges from increasing renewable generation in the Indian Power System," Working Papers EPRG2031, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    11. Thomas, Gareth & Demski, Christina & Pidgeon, Nick, 2019. "Deliberating the social acceptability of energy storage in the UK," Energy Policy, Elsevier, vol. 133(C).
    12. Shrimali, Gireesh & Kniefel, Joshua, 2011. "Are government policies effective in promoting deployment of renewable electricity resources?," Energy Policy, Elsevier, vol. 39(9), pages 4726-4741, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pablo Carrasco Ortega & Pablo Durán Gómez & Julio César Mérida Sánchez & Fernando Echevarría Camarero & Ángel Á. Pardiñas, 2023. "Battery Energy Storage Systems for the New Electricity Market Landscape: Modeling, State Diagnostics, Management, and Viability—A Review," Energies, MDPI, vol. 16(17), pages 1-51, August.
    2. Laxmi Gupta & Ravi Shankar, 2022. "Adoption of Battery Management System in Utility Grid: An Empirical Study Using Structural Equation Modeling," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 573-596, December.
    3. Jindal, Abhinav & Shrimali, Gireesh, 2022. "Cost–benefit analysis of coal plant repurposing in developing countries: A case study of India," Energy Policy, Elsevier, vol. 164(C).
    4. Qusay Hassan & Bartosz Pawela & Ali Hasan & Marek Jaszczur, 2022. "Optimization of Large-Scale Battery Storage Capacity in Conjunction with Photovoltaic Systems for Maximum Self-Sustainability," Energies, MDPI, vol. 15(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoppmann, Joern & Wu, Geng & Johnson, Jillian, 2021. "The impact of demand-pull and technology-push policies on firms’ knowledge search," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    2. Shrimali, Gireesh & Lynes, Melissa & Indvik, Joe, 2015. "Wind energy deployment in the U.S.: An empirical analysis of the role of federal and state policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 796-806.
    3. Basher, Syed Abul & Masini, Andrea & Aflaki, Sam, 2015. "Time series properties of the renewable energy diffusion process: Implications for energy policy design and assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1680-1692.
    4. Laxmi Gupta & Ravi Shankar, 2022. "Adoption of Battery Management System in Utility Grid: An Empirical Study Using Structural Equation Modeling," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 573-596, December.
    5. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    6. Eric Bowen & Donald J. Lacombe, 2017. "Spatial Dependence in State Renewable Policy: Effects of Renewable Portfolio Standards on Renewable Generation within NERC Regions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    7. Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]," Post-Print hal-01585906, HAL.
    8. Consolación Quintana-Rojo & Fernando-Evaristo Callejas-Albiñana & Miguel-Ángel Tarancón & Isabel Martínez-Rodríguez, 2020. "Econometric Studies on the Development of Renewable Energy Sources to Support the European Union 2020–2030 Climate and Energy Framework: A Critical Appraisal," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    9. Eric Bowen & Donald J. Lacombe, 2015. "Spatial interaction of Renewable Portfolio Standards and their effect on renewable generation within NERC regions," Working Papers 15-03, Department of Economics, West Virginia University.
    10. Ebers Broughel, Anna, 2019. "Impact of state policies on generating capacity for production of electricity and combined heat and power from forest biomass in the United States," Renewable Energy, Elsevier, vol. 134(C), pages 1163-1172.
    11. Zhao, Xiaoli & Li, Shujie & Zhang, Sufang & Yang, Rui & Liu, Suwei, 2016. "The effectiveness of China's wind power policy: An empirical analysis," Energy Policy, Elsevier, vol. 95(C), pages 269-279.
    12. Tolliver, Clarence & Keeley, Alexander Ryota & Managi, Shunsuke, 2020. "Policy targets behind green bonds for renewable energy: Do climate commitments matter?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    13. Lynes, Melissa & Featherstone, Allen, 2015. "Economic Efficiency of Utility Plants Under Renewable Energy Policy," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205674, Agricultural and Applied Economics Association.
    14. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    15. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Liu, Feng, 2021. "Provincial allocation of renewable portfolio standard in China based on efficiency and fairness principles," Renewable Energy, Elsevier, vol. 179(C), pages 1233-1245.
    16. Sugimoto, Kota, 2019. "Does transmission unbundling increase wind power generation in the United States?," Energy Policy, Elsevier, vol. 125(C), pages 307-316.
    17. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    18. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    19. Karen Maguire & Abdul Munasib, 2013. "Do Renewables Portfolio Standards Increase Electricity Prices? A Synthetic Control Approach," Economics Working Paper Series 1403, Oklahoma State University, Department of Economics and Legal Studies in Business, revised Aug 2013.
    20. kos Hamburger & G bor Harangoz, 2018. "Factors Affecting the Evolution of Renewable Electricity Generating Capacities: A Panel Data Analysis of European Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 161-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:176:y:2022:i:c:s0040162521009021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.