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ABSTRACT 

The aim of this article is to demonstrate the application of a simple numerical method which is suitable 

for motion analysis of different mechanical systems. For mechanical engineer students it is important task.  

Mechanical systems consisting of rigid bodies are linked to each other by different constraints. 

Kinematical and kinetical analysis of them leads to integration of second order differential 

equations. In this way the kinematical functions of parts of mechanical systems can be determined. 

Degrees of freedom of the mechanical system increase as a result of built-in elastic parts. Numerical 

methods can be applied to solve such problems. 

The simple numerical method will be demonstrated in MS Excel by author by the aid of two 

examples. MS Excel is a quite useful tool for mechanical engineers because easy to use it and details 

can be seen moreover failures can be noticed. Some parts of results obtained by using the numerical 

method were checked by analytical way. 

The published method can be used in higher education for mechanical engineer students. 
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INTRODUCTION 

The studying of motion analysis is important part in the education of mechanical engineers. 

Kinematic and dynamic analysis of mechanical systems is a fundamental chapter in motion 

analysis [1-4]. Multi DOF mechanical systems can be described by second order differential 

equations. Analytical solution of them in most cases is quite difficult or impossible. 

In such cases the application of numerical methods can be advantageous. There are different 

numerical algorithms which are suitable for solving differential equations. The results obtained in 

this way can be plotted in different kinematical diagrams. This method can help engineer 

students better learning of school-work and connections among different physical quantities. 

In this article the results of kinetic analysis of two mechanical systems will be demonstrated. 

PROPOSED SIMPLE NUMERICAL METHOD 

In general cases motion equations of two degree-of-freedom mechanical systems as 

homogenous differential equation-system are  

 0SqqM   (1) 

where M is mass matrix, S spring stiffness matrix and q vector of generalized coordinates. 

Let us suppose that the mechanical system can be described by q = q(x, φ) generalized coordinates. 

Physical quantities oooo  , , ,  xx  describe the initial state of the system. Time step is i1i tt  . 

Applied algorithms in MS Excel can be seen in Table 1. 

Table 1. Applied algorithms for solving differential-equation system (Example 1). 

t  ) , , ,(  xxx  x  x  ),,x,x(        

ot  ) , , ,( ooooo  xxx  
ox  

ox  ) , , ,( ooooo   xx  
o  

o  

1t  ) , , ,( 11111  xxx  )(  o1oo1 ttxxx    )( o11o1 ttxxx    ) , , ,( 11111   xx  )  (    o1oo1 tt     )  (    11o1 ott     

2t  ) , , ,( 22222  xxx  )  (     12112 ttxxx     12212       ttxxx    ) , , ,( 22222   xx  )( 12112 tt     )  (    12212 tt     

3t  …. …. …. …. …. …. 

4t  …. …. …. …. …. …. 

EXAMPLE 1: CRANK DRIVE WITH OSCILLATING MASS (2 DEGREES 
OF FREEDOM) 

In Figure 1 a sketch of a simple mechanical system (two degrees of freedom) can be seen. 

There is a mass m and a crank drive in between spring and viscous damping. Disc on the left 

side driven by moment M can rotate around horizontal axis denoted by A. Moment of inertia 

is marked by JA. 

There is a frame between disc and mass is driven by slider secured on the disc can move 

along horizontal axis x. Spring stiffness of linear spring and damping factor of viscous 

damping are denoted by s and k. Unloaded length of spring marked by lo. 

The motion of the crank drive mechanism can be described by the following second order 

differential equation system: 
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Figure 1. Sketch of crank drive mechanism and oscillating mass. 

 0)cos()sin( o   rlxsrxkxm  , (2) 

   0sin)cos()sin( o   rrlxsrxkMJ  .  (3) 

Applying numerical integration method the kinematical functions of disc and mass can be 

plotted and studied in case of different physical properties of elements of moving structure. 

During application of proposed simple numerical method the initial conditions of rotating 

disc and translating mass can be varied optionally. Further effects for example friction and 

external loads can be taken into consideration.  

In first case the structure starts from rest position i.e. m/s0  o x , m0    ox ,  rad/s0o , rad 0o  . 

Data: M = 20 Nm, JA = 4 kg m
2
, m = 8 kg, r = AB = 0,2 m, lo = 1,0 m, s = 2000 N/m,  

k = 200 Ns/m, (time step: 0,001 s, time interval: 0 ≤ t ≤ 5 s). 

After two-time numerical integration of motion equations the kinematical functions can be 

seen in Figure 2. 

EXAMPLE 2: TWO MASSES SPRING IN BETWEEN MOVE IN CROSS 
DIRECTION 

In Figure 4 a sketch a special mechanical system can be seen. There are two mass points 

marked by m1 and m2 moreover linear spring in between. Mass points can slide vertically and 

horizontally. 

The mass of spring between mass points is neglected. As it can be seen in Figure 4 positions 

of mass points are determined by coordinates y1 and x2. Friction between mass points and 

surfaces is neglected. 

Unloaded length of spring is marked by lo, its actual length is  

 




 

2

2

2

1     xyl ,  (4) 

the spring force,  

   




 

2

2

2

1oo           xylsllsR .  (5) 

Algebraic sign of spring force of pressed spring is positive. Motion equations of mass points 

are: 
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Figure 2. Kinematical diagrams of rotating disc and translating mass (example 1, first case). 

 111   sin  ymRgm   ,  (6) 

 22  cos xmR  . (7) 

Taking into consideration that 
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the form of motion equations yields the following:  
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from which after rearrangement 
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Figure 3. Kinematical diagrams of rotating disc and translating mass (example 1, second case). 

 

Figure 4. Sketch of mechanical system consisting of two mass points and linear spring in between. 
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Data and initial conditions for the numerical solution: unloaded length of spring, lo=0,5 

m,  spring stiffness, s = 2000 N/m, gravital acceleration g = 9,81 m/s
2
, m1 = 10 kg,  

m2 = 6 kg, m4,01o y , m/s01o y , m3,02o x , m/s02o x . Timeinterval: 0 s ≤ t ≤ 2 s, 

time step: 0,0001 s. 

Kinematic functions of mass points and the spring force in function of time can be seen in 

Figure 5-8.  

  

Figure 5. Acceleration functions of mass points. 

 

Figure 6. Velocity functions of mass points. 

 

Figure 7. Position functions of mass points. 

The level of mechanical power of the moving system in function of time is suitable to check 

the reliability and accuracy of applied numerical method. Because of the fact that the 

investigated mechanical system is conservative the level of mechanical power has to be 

constant. The difference of the level of mechanical power from its initial value is not 

significant as it can be seen in Figure 9. 

In nonlinear case the characteristic of the spring can be described in function of deformation 

according to next equation, i. e.: 

x2 
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y  

2
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Figure 8. Spring force in function of time. 

 

Figure 9. Mechanical power of the mechanical system in function of time. 

 

3
2

2

2

1o

2

2

2

1o

2

2

2

1o

2

2

2

1o                       




 





 





  xylcxylxylbxylR ,(12) 

where a, b and c are parameters. By modification of these parameters the real nonlinear 

characteristic of the spring can be approximated with the demanded accuracy. 

In this case the motion equations in final form are 
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Data and initial conditions are quite the same like in linear case: unloaded length of spring,  

lo = 0,5 m, characteristical parameters a = 1000 N/m, b = 30 000 N/m
2
, c = 400 000 N/m

3
, 

gravital acceleration g = 9,81 m/s
2
, m1 = 10 kg, m2 = 6 kg, m4,0  1o y , m/s0  1o y ; 

m3,0  2o x , m/s0  2o x . Time interval: 0 s ≤ t ≤ 2 s, time step: 0,0001 s. Kinematic functions 

of mass points and the mechanical power in function of time can be seen in Figures 10-13. 

The spring force in function of time and deformation (unit: meter) are demonstrated in Figure 

14. As it can be noticed the applied spring is strongly nonlinear. 



I. Bíró 

68 

 

Figure 10. Acceleration functions of mass points. 

 

Figure 11. Velocity functions of mass points. 

 

Figure 12. Position functions of mass points. 

 

Figure 13. Mechanical power of the mechanical system in function of time. 
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a) 

 

b) 

 

Figure 14. a) Spring force in function of time and deformation and b) algebraic sign of spring 
force of pressed spring is positive. 

CONCLUSIONS 

The demonstrated method can be applied easily for engineer students in the higher education. 
The method is suitable for investigation of similar mechanical systems having one or more 
degrees of freedom. By consequent modification of data (physical quantities) of systems a 
wide range of possible structures and their kinematical behavior can be analyzed. For this 
reason the application of this method can be advantageous for engineer students. 
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