Automatic recognition of multiparty human interactions using dynamic Bayesian networks
View/ Open
Date
2009Author
Dielmann, Alfred
Metadata
Abstract
Relating statistical machine learning approaches to the automatic analysis of multiparty
communicative events, such as meetings, is an ambitious research area. We
have investigated automatic meeting segmentation both in terms of “Meeting Actions”
and “Dialogue Acts”. Dialogue acts model the discourse structure at a fine
grained level highlighting individual speaker intentions. Group meeting actions describe
the same process at a coarse level, highlighting interactions between different
meeting participants and showing overall group intentions.
A framework based on probabilistic graphical models such as dynamic Bayesian
networks (DBNs) has been investigated for both tasks. Our first set of experiments
is concerned with the segmentation and structuring of meetings (recorded using
multiple cameras and microphones) into sequences of group meeting actions such
as monologue, discussion and presentation. We outline four families of multimodal
features based on speaker turns, lexical transcription, prosody, and visual motion
that are extracted from the raw audio and video recordings. We relate these lowlevel
multimodal features to complex group behaviours proposing a multistreammodelling
framework based on dynamic Bayesian networks. Later experiments are
concerned with the automatic recognition of Dialogue Acts (DAs) in multiparty
conversational speech. We present a joint generative approach based on a switching
DBN for DA recognition in which segmentation and classification of DAs are
carried out in parallel. This approach models a set of features, related to lexical
content and prosody, and incorporates a weighted interpolated factored language
model. In conjunction with this joint generative model, we have also investigated
the use of a discriminative approach, based on conditional random fields, to perform
a reclassification of the segmented DAs.
The DBN based approach yielded significant improvements when applied both
to the meeting action and the dialogue act recognition task. On both tasks, the DBN
framework provided an effective factorisation of the state-space and a flexible infrastructure
able to integrate a heterogeneous set of resources such as continuous
and discrete multimodal features, and statistical language models. Although our
experiments have been principally targeted on multiparty meetings; features, models,
and methodologies developed in this thesis can be employed for a wide range
of applications. Moreover both group meeting actions and DAs offer valuable insights about the current conversational context providing valuable cues and features
for several related research areas such as speaker addressing and focus of attention
modelling, automatic speech recognition and understanding, topic and decision detection.