Nothing Special   »   [go: up one dir, main page]

Počet záznamů: 1  

An adaptive method for bandwidth selection in circular kernel density estimation

  1. 1.
    0576866 - ÚI 2025 RIV DE eng J - Článek v odborném periodiku
    Zámečník, S. - Horová, I. - Katina, Stanislav - Hasilová, K.
    An adaptive method for bandwidth selection in circular kernel density estimation.
    Computational Statistics. Roč. 39, č. 4 (2024), s. 1709-1728. ISSN 0943-4062. E-ISSN 1613-9658
    Institucionální podpora: RVO:67985807
    Klíčová slova: Circular density * Bandwidth selector * Adaptive kernel estimator * Von Mises density * Smoothed cross validation
    Impakt faktor: 1, rok: 2023
    Způsob publikování: Open access
    DOI: https://doi.org/10.1007/s00180-023-01401-0

    Kernel density estimations of circular data are an effective type of nonparametric estimation. The performance of these estimations depends significantly on a smoothing parameter referred to as bandwidth. Selecting suitable bandwidths for these types of estimation pose fundamental challenges, therefore fixed bandwidth selectors are often the initial choice. The study investigates common bandwidth selection methods and proposes novel methods which adopt the idea from the linear case. The attention is also paid to variable bandwidth selection. Using simulations which incorporate a range of circular distributions that exhibit multimodality, peakedness and skewness, the proposed methods were evaluated and then compared with other bandwidth selectors to determine their potential advantages. Two real datasets, one containing animal movements and the other wind direction data, were applied to illustrate the utility of the proposed methods.

    Trvalý link: https://hdl.handle.net/11104/0346269

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0576866-aoa.pdf02 MBOA CC BY 4.0Vydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.