Data-Driven, Statistical Learning Method for Inductive Confirmation of Structural Models
Date
2017-01-04
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Automatic extraction of structural models interferes with the deductive research method in information systems research. Nonetheless it is tempting to use a statistical learning method for assessing meaningful relations between structural variables given the underlying measurement model. In this paper, we discuss the epistemological background for this method and describe its general structure. Thereafter this method is applied in a mode of inductive confirmation to an existing data set that has been used for evaluating a deductively derived structural model. In this study, a range of machine learning model classes is used for statistical learning and results are compared with the original model.
Description
Keywords
hybrid mode of research, inductive confirmation, machine learning, structural equation models
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 50th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.