Nothing Special   »   [go: up one dir, main page]

 

Data-Driven, Statistical Learning Method for Inductive Confirmation of Structural Models

Date

2017-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Automatic extraction of structural models interferes with the deductive research method in information systems research. Nonetheless it is tempting to use a statistical learning method for assessing meaningful relations between structural variables given the underlying measurement model. In this paper, we discuss the epistemological background for this method and describe its general structure. Thereafter this method is applied in a mode of inductive confirmation to an existing data set that has been used for evaluating a deductively derived structural model. In this study, a range of machine learning model classes is used for statistical learning and results are compared with the original model.

Description

Keywords

hybrid mode of research, inductive confirmation, machine learning, structural equation models

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 50th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.