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Summary. In this paper we present an approach to label data points in 3d ranyeaud to
use these labels to learn prototypical representations of objects. Qoaappuses associative
Markov networks (AMNS) to calculate the labels and a clustering operatideteyrmine the
prototypes of homogeneously labeled regions. These prototypeseareigkd to replace the
original regions. In this way, we obtain more accurate models and adalificere able to
recover the structure of partially occluded objects. Our approachéesimplemented and
evaluated on 3d data of a building acquired with a mobile robot. The expaianesults
demonstrate that our algorithm can robustly identify objects with the sanpe stmal can use
the prototypes of these objects for highly accurate mesh completion imtaselusions.

1 Introduction

Recently, the problem of acquiring three-dimensional n®deing mobile robots
has become quite attractive and a variety of robot systensslheen developed that
are able to acquire three-dimensional data using laseerscanners [17, 10, 6, 21,
7, 13, 19]. Most of these approaches deal with the problenoaf to improve the
localization of the robot or how to reduce the huge amountaté thy piecewise lin-
ear approximations. In this paper we consider the probleafestifying data points
in three-dimensional range scans into known classes. Tierglemotivation behind
this is to achieve the ability to learn maps that are anndtaith symbolic labels. In
the past, it has been shown that such information can beedito find compact rep-
resentations of the maps [19], but also to improve the psooE®ining partial maps
into one big map, usually callemiap registrationby only considering associations
between points belonging to corresponding objects [18, H8jvever, a problem
arises when these annotated objects are only seen fromal petv or are occluded
by other objects. Even if the annotationdalelsare correct, corresponding objects
can not be found robustly because the entire shape of thetsliganot available.
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In this paper, we present a supervised learning approadctata kthe shape of
objects in data points obtained from 3d range scans. Ouridgdgoapplies associa-
tive Markov networks (AMNS) [15] to robustly determine segmtations of the data
points into diterent classes. We then perform a clustering operation antiégdual
segments and calculate a prototype for each segment. Inl stépa we replace the
individual segments by their prototypes. As a result, waiobaccurate models and
even are able to complete partially scanned objects, whetfuéntly appear in the
case of occlusions.

The problem of extracting features from range data has keeied intensively
in the field of mobile robotics. For example, Buschka andi8 [4] describe a
virtual sensor that is able to identify rooms from range datiditionally, Simmons
and Koenig [9] use a pre-programmed routine to detect dogiram range data.
Althaus and Christensen [1] use line features to detecidme and doorways. Also
several authors focused on the problem of extracting platractures from range
scans using the expectation maximization algorithm (EN) 2, 19]. Furthermore,
there has been work on employing features extracted froeetiimensional range
scans to improve the scan alignment process [18, 13]. Theagipes described
above either operate on two-dimensional scans, considgledieatures such as pla-
narity, or apply pre-programmed routines to identify thatfees in range scans.

In the context of learning annotated 3D maps from point cldath several au-
thors use the so-callegpin imageg8, 5] to recognize objects. Vandapest al. [20]
extract saliency features and apply EM to learn a Gaussiatukdéi Model classi-
fier. Another popular object description technique sihape distributiongl14]. In
contrast to these approaches, our algorithm classifiesdtee iy also taking into
account the potential labels of neighboring data pointss l®hmodeled in a mathe-
matical framework known as Markov random fields and imprdathessegmentation
by eliminating false classifications. The recent work by Aelgv et al. [2] applies
a similar approach to label data points. However, this teglendoes not cluster the
segments and also cannot complete objects which have baenestpartially only.
Frith and Zakhor [6] generate large-scale 3d-models of urbemescand apply linear
interpolation to deal with partial occlusions. In contristhis method, our approach
extracts object prototypes from range data and uses thesaypes to more accu-
rately recover the structure of the scene in the case of siceis.

This paper is organized as follows. In Section 2, we intredaar scan-point
classification technique and afiieient approach to the learning problem. Then, Sec-
tion 3 describes our algorithm to handle occlusions in tha gets. Finally, Section 4
presents experimental results illustrating the usefglioé®ur approach.

2 Point Classification using Markov Networks

The first part of our object recognition algorithm consistaclassification for a
set of given data points based on a parameter set that wasedefnom a hand-
labeled training data set. For this classification we usgsanciative Markov network
(AMN) [15] which is an instance of eelational Markov networkRMN). RMNs and
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AMNSs utilize undirected graphical models to represent thieditional probability
P(y | X) wherey is the set of labels anxlthe set of features associated to each data
point. This is done by defining functions that assign a pasitalue to each clique
in the graph and its associated labeling. These functiamsaltedclique potentials
and reflect how well a given labeling fits to a specified cligigm@ph nodes. In
AMNSs, the maximum size of a clique is 2, so that onlyde potentials(x;,y;) and
edge potentialg/(x;;, i, y;) exist. Here, we introduce the feature vectgof features
extracted from the edge between nodasd |. Likewise,y; denotes the label of node
i. Note that the edge feature vecigrdoes not necessarily have the same size as the
node featureg;.

Assuming that the network consists bf nodes and a set = {(i, j)li,j €
{1,...,N},i # j} of edges, the overall conditional probability represertigdhe
AMN can then be formulated as

N
POy 1= 3 | [0 [ ] vz vy &
i=1

@ie&

whereZ = 3, T, e(xi y) [Tajee ¥(Xij, ¥, ;). Usually,Z is denoted as thparti-
tion functionand represents the sum of potentials for all possible lagsji’.

It remains to describe the potentiglendy. As mentioned above, the potentials
reflect how well the features fit to the labels. One simple veayefine the potentials
is thelog-linear model [15]. In this model, a weight vectai is introduced for each
class labek = 1,...,K. The node potentiap is then defined so that lagx;, ;) =
wK-x; wherek = y;. Accordingly, the edge potentials are defined asidog, vi, y;) =
wE' - x; wherek = y; andl = y;. Here we distinguish betweemeightsw, for the
nodes and weighta, for the edges. Also, we define the weights depending on the
class labelk andl. This means that the potential of nodeepends on the label
k =y that is assigned to it. Similarly, the edge potengiadepends on the labeks
andl that are assigned to the nodes connected by the edge. Theeides that of a
relational modeling where the dependencies of the labels are expressathigher
level, namely the class level. For example, we can modelatietiiat classeA and
B are more strongly related to each other than, say, classesiC. As a result, the
weighting of neighboring points with labefsandB is higher than of points labeled
AandC.

To summarize, we define the node and edge potentials as:

e(Xi.Yi) = exp (W - xi) (2
Wi, Y. Yj) = exp ws' - xij) 3)

2.1 Learning and Inference

The scan point segmentation using AMNSs is formulated as arsiged learning
task. This means that in the learning phase, we are given af $abels§y which

were assigned by hand to the training data. Now we learn & setightsw so that
Pw(¥ | X) is maximized. In the inference phase, these weights arm tasknd a set
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of labelsy for the test data set so thBj,(y | X) is maximized. As can be seen from
Equation 1, both steps include the computation of the pamtitunction Z. In all
but the simplest cases, the calculatiorZat intractable. For the inference task we
can exploit the fact thaZ does not depend on the particular labgl herefore the
maximization ofP,(y | x) is equivalent to maximizin@ P, (y | X). This means that
Z can simply be neglected in the inference step.

However, in the learning task we need to maximizgy | x) over allw, which
means to calculaté for eachw. To overcome this problem, Tasketral.[16] propose
a different way to learn the weights Instead ofP,, (¥ | X), they maximize thenargin
between the optimal labelingand any other labeling defined by

log Pw(¥ | X) — log Pu(y | X). (4)

This way, the ternz,,(x) cancels out and the maximization can be doffieiently.
This method is referred to asaximum margimptimization [16]. The details of this
formulation are omitted here for the sake of brevity. We ambge that the problem
is reduced to a quadratic program (QP) of the form:

min ZIwiP + oz 5)

such that

N
WX9+§—Zm >N; wWe>0; a-— Z off =Wy x> 9K Vik;

i=1 ij,jicE
off +af —wE-x; >0 Vij e E.k  aff.af >0 Vij e Ek
Here, the variables that are solved for in the QP are the wsighk: (w,, we), a slack
variable¢ and additional variables;, a;; andaji. We refer to Taskaet al. [15] for
details.

In the inference task we want to find labgighat maximize lodPy(y | X). As

mentioned aboveZ does not depend oy so that the maximization can be done
without considerind@. This leads to a linear program of the form

N K K

argmax > > (WK XV F DS W i)y (6)

i=1 k=1 iJeE k=1

such that
K
Q) Y20 Vik b) ) yi=1 Vi o<y v§<yl VijeEk
k=1

Here, we introduced variablqﬁ representing the labels of two points connected by
an edge [15].



Recovering the Shape of Objects in 3D Point Clouds with Partial Occlusions
2.2 Hfficient Variant of AMN Learning

Unfortunately, the learning task described in the previrgdion is computationally
expensive with respect to run-time and memory requireméiseach scan point
there is one variable and one constraint in the QP. Furtherme have two variables
and two constraints per edge. This results in a large cortipo#d efort (Anguelov
et al. [2] report one hour run time for about 30,000 scan points)véier, in typi-
cal data sets, a huge part of the data is redundant and theatatze substantially
reduced by down-sampling. In our experiments we never fewidknce that this re-
duces the overall performance. The run time dropped fromtz®minutes down to
less than a minute while the detection remained at 92%. Hewyi\s not clear how
many samples are necessary to obtain good detection ratesjse this depends on
the data set. A scene with many small objects should not be-dgampled as much
as a scene with only few, big objects. Therefore we reducdatemdaptively

The idea of our adaptive data reduction technique is to plasimuch informa-
tion as necessary from the training data so that still a geodgnition rate can be
achieved. As this depends on the data set, we need an addatastructure. One
popular way to adaptively store geometrical data laddrees. This data structure
follows a coarse-to-fine approach: the higher the level énttbe the higher the data
abstraction. Wittkd-trees we can reduce the data set by considering only scatspoi
in the tree that are stored in leaf nodes up to a given maximepthd,,ax All points
in deeper branches are then merged into a new leaf node dfdigpt The data point
in this new leaf node is calculated as the mean of all poimisfthe corresponding
subtree. Apart from the reduction in the data complexitis #pproach makes the
sampling less dependent on the data density. The remainggjign is how to select
dmax As for the uniform down-sampling, this is dependent on i det. In our cur-
rent system, we therefore modify the reduction algorithrthsbit is parameter-free.
Instead of pruning at a fixed level, we merge all points in aragwhenever all of
its labels are equal. Accordingly, for large homogeneoaasrwhere all points have
the same label, we obtain a higher level of abstraction thdreierogeneous areas.

3 Occlusion Handling

In most visual recognition tasks we encounter the problewcofusion objects are
partially hidden by others and therefore can not be recegiriabustly. Our approach
shows a method to overcome this problem using the semartiglkdge acquired in
the learning phase. The idea is to compare objects of the slasgeto each other and
to infer the shape of a single object based on the shapes otltke objects in the
class. Hereby we assume that the objects in a class arersimégach other. Based
on this assumption, we first group all poits= {ps, ..., pn} that were labeled with
the same label in the inference step. Next we cluster allimddagroups according
to features defined over the point clouds. Then we match the plouds for each
cluster to each other to obtain the prototypical object® Mieshes calculated for the
prototypes are then used to replace the original point cloud
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3.1 Clustering

First, we clustefP into contiguous subsets which we calitities The clustering is
done using a region-growing algorithm in 3D space where #ighboring relations
can be obtainedficiently using akd-tree. Then, we cluster the entities into sub-
classes. The idea here is that usually a class consistdfefatitkinds of objects,
e.g., in a class “window” we can find single- and double-sizedaws as well as
windows of diferent shapes. Of course, the distinction of these subslassdd be
done when labeling the training data already. In this casé@N would automati-
cally yield appropriate labels for the individual subclkessn our current system we
decided to separate the division into sub-classes fromatielihg process, because it
turned out to be diicult to define features for theftierent entities on the point level.
In our implementation we use three entity features baseth@mitiented bounding
box B of the entity and its point cloud. The features are the volume Bf the quo-
tient of the second-longest and the longest eddg afid theradiusof P, defined by
the maximal distance of a point Pand the centroid oP. Again, for the clustering
we apply region-growing, in this case in 3D feature space.

3.2 Entity Matching

In the next step, we match the entities that belong to the saimeass to each other.
This is the step in which information about the shape of otiéyds used to complete
the shape of another entity in the same subclass. This asdiateall entities in a
subclass have the same shape and that a good matching bedntges can be
found. The matching is done using the Iterative ClosesttRagorithm (ICP) [3].
In our current implementation, we select one entity as aeefee frame and match
the other entities to the selected one. One could also tHickmmecting all entities
into a clique and match all entities to each other. Then, th&hing errors can be
reduced by performing a global optimization of the entitg@® In our experiments,
we obtained good results with the one-reference-framentgab. After matching
the single entities we obtain a merged point cloud aptheotypeof the subclass.

3.3 Mesh Generation

For a better visualization, we generate triangulated nmegben the point cloud re-
sulting from the previous step. To this end, we insert alhf®into a 3D grid. The
size of the grid is defined by the oriented bounding box of thiefxloud. For each

cell cin the grid we store the expected number of points that fadl @) where the
probability of falling intoc is modeled as an isotropic Gaussian whose mean is the
center ofc. Then we apply the marching cubes contouring algorithm {afihd the
contour that separates occupied cells from free cells. Asalt; we obtain a trian-
gular mesh that approximates the volume represented bythegboud. Finally, we
re-project the obtained triangle mesh to all original pos# of the singular entities.
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4 Experiments

We implemented the described algorithm and tested it on ladega set. The data
was collected with a mobile outdoor robot that has a SICKrlasege finder and
a patilt unit mounted on top for 3D data acquisition. We scannduliiéding with
windows of diferent kinds and sizes (see 1(a)). In a first step, we dividedl#ta
into walls by using a plane extraction algorithm (see Fidl(t®). Then we extracted
all points that had a distance of at mosir@ from the planes.

The goal was to classify the scan points into the classesdoviti, “wall” and
“gutter”. Accordingly, we labeled the training data set malty as shown in Fig-
ure 1(c). It consists of one wall with only single-size wimdo The original size of
the training data set was 36191 data points, while aftertagdapeduction we ob-
tained a reduced set of 3944 data points. Figure 1(d) shosveetult of the AMN
based classification on one of our test sets. In a quangtatluation we obtained
93.8% correctly classified labels. As we can see from the figineretare gaps in
the data caused by the occlusions of a tree in front of thalimgl This results in
windows that are only partially seen. Figures 1(d)-1(hvskiee remaining steps of
our algorithm. After applying the last step, namely the bpodjection into the scene
we obtain the mesh shown in Figure 2. In the scene, all obfents been replaced
by the prototypes of the subclasses in which they fall. Nio& this holds for all ob-
jects in the scene, including the wall and the gutter. Tligeince compared to the
window class is only that for these classes only one objextirscin the data. This
means that the prototype of the class is equal to the objecustered. However, for
the partially occluded objects, our algorithm was able tmver the full structure.

5 Conclusion

In this paper we presented an approach to segment threesional range data and
to use the resulting segments for augmenting the origin@l. d@ur approach uses
associative Markov networks to robustly extract regiorseldeon an initial labeling
obtained with simple geometric features. Ta@ently carry out the learning phase,
we use an adaptive technique to prunekteree. We then cluster the segments and
calculate a prototype for each segment. These prototygethan used to replace
the original segments. The advantage of this approach idfdido First, it allows
to increase the accuracy of the individual regions, andrsgdcallows to complete
partially seen objects by the prototypes.

Our approach has been implemented and tested on data abgithiean outdoor-
robot equipped with a laser range finder mounted on gifiamit. In complex data
sets containing outer walls of buildings, our approach hasessfully been applied
to the task of finding a segmentation into walls, windows, gatters even in the
case of partial occlusions.
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#

28
b

(d) AMN output (test set) (e) clustering

(f) entity matching (g) mesh generation | (h) mesh generation Il

Fig. 1. The individual steps of our occlusion handling algorithm. From top lefotodm right:
a) original 3D scan (no occlusions) b) plane extraction (only one plaskden), c) hand-
labeling of the training data, d) labeling of a test data set obtained with the Afprbach;
note that some windows and the wall are occluded, e) class-wise sstirahg, here for the
window class, f) scan matching of all subclusters, here the big windgwsagesh generation
from prototype shown in f), h) mesh for the roof windows prototype.
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Fig. 2. Result obtained with our algorithm. Note that two windows in the second cohave
been restored. In the original data (see Figure 1(d)) these windovesogeluded by a tree.
Also note that the wall could not be restored, because only one walltobgscencountered
in the data set so that no prototype containing data in the occluded areabtamed.
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