Article Dans Une Revue
Discrete Mathematics and Theoretical Computer Science
Année : 2011
Résumé
Let G be a simple graph and let us color its edges so that the multisets of colors around each vertex are distinct. The smallest number of colors for which such a coloring exists is called the irregular coloring number of G and is denoted by c(G). We determine the exact value of the irregular coloring number for almost all 2-regular graphs. The results obtained provide new examples demonstrating that a conjecture by Burris is false. As another consequence, we also determine the value of a graph invariant called the point distinguishing index (where sets, instead of multisets, are required to be distinct) for the same family of graphs.
Domaines
Mathématique discrète [cs.DM]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...
Service Ist Inria Sophia Antipolis-Méditerranée / I3s : Connectez-vous pour contacter le contributeur
https://inria.hal.science/hal-00990495
Soumis le : mardi 13 mai 2014-15:39:30
Dernière modification le : mardi 7 février 2023-03:42:48
Archivage à long terme le : lundi 10 avril 2017-22:21:55
Dates et versions
- HAL Id : hal-00990495 , version 1
- DOI : 10.46298/dmtcs.544
Citer
Sylwia Cichacz, Jakub Przybylo. Irregular edge coloring of 2-regular graphs. Discrete Mathematics and Theoretical Computer Science, 2011, Vol. 13 no. 1 (1), pp.1--11. ⟨10.46298/dmtcs.544⟩. ⟨hal-00990495⟩
Collections
55
Consultations
1055
Téléchargements