A dynamic evolutionary multi-agent system to predict the 3D structure of proteins - Inria - Institut national de recherche en sciences et technologies du numérique
Nothing Special   »   [go: up one dir, main page]

Communication Dans Un Congrès Année : 2020
A dynamic evolutionary multi-agent system to predict the 3D structure of proteins
1 UFRGS - Instituto de Informática da UFRGS (Reitoria, Av. Paulo Gama 110 - Porto Alegre/RS - Brésil)
"> UFRGS - Instituto de Informática da UFRGS
2 DELYS - DistributEd aLgorithms and sYStems (2 rue Simone Iff -CS 42112 -75589 Paris Cedex 12 - France)
"> DELYS - DistributEd aLgorithms and sYStems
3 USACH - Universidad de Santiago de Chile [Santiago] (Universidad de Santiago de Chile. Avenida Libertador Bernardo O'Higgins nº 3363. Estación Central. Santiago. Chile - Chili)
"> USACH - Universidad de Santiago de Chile [Santiago]
Leonardo Corrêa
  • Fonction : Auteur
  • PersonId : 1090270
Luciana Arantes
Pierre Sens
Márcio Dorn
  • Fonction : Auteur
  • PersonId : 1090271

Résumé

The protein structure prediction is one of the key problems in Structural Bioinformatics. The protein function is directly related to its conformation and the folding can provide to researchers better understandings about the protein roles in the cell. Several computational methods have been proposed over the last decades to tackle the problem. In this paper, we propose an ab initio algorithm with database information for the protein structure prediction problem. We do so by designing some versions of a multi-agent system that use concepts of dynamic distributed evolutionary algorithms to speed up and improve the optimization by better adapting the algorithm to the target protein. The dynamic strategy consists of auto-adapting the number of optimization agents according to the needs and current status of the optimization process. The system is able to scale in/out itself depending on some diversity criteria. The algorithms also take advantage of structural knowledge from the Protein Data Bank to better guide the search and constraint the state space. To validate our computational strategies, we tested them on a set of eight protein sequences. The obtained results were topologically compatible with the experimental correspondent ones, thus corroborating the promising performance of the strategies.
Fichier principal
Vignette du fichier
CEC-v2-1.pdf (1.59 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03132137 , version 1 (04-02-2021)
Identifiants

Citer

Leonardo Corrêa, Luciana Arantes, Pierre Sens, Mario Inostroza-Ponta, Márcio Dorn. A dynamic evolutionary multi-agent system to predict the 3D structure of proteins. WCCI 2020 - IEEE World Congress on Evolutionary Computation - CEC Sessions, Jul 2020, Glasgow / Virtual, United Kingdom. pp.1-8, ⟨10.1109/CEC48606.2020.9185761⟩. ⟨hal-03132137⟩
77 Consultations
280 Téléchargements

Altmetric

Partager

More