Article Dans Une Revue
Journal of Computational Physics
Année : 2021
Résumé
In this paper we present a novel algorithm for simulating the Willmore flow with conservation of volume and area. The idea is to adapt the class of diffusion-redistanciation algorithms to the Willmore flow or high-order geometrical flows and extend it in dimension three. These algorithms rely on alternating a diffusion of the signed distance function to the interface and a redistanciation step, following Merriman, Bence, and Osher's ideas. The constraints are enforced between the diffusion and redistanciation steps via a simple rescaling method. The energy globally decreases at the end of each global step. The algorithm features the computational efficiency of thresholding methods without requiring adaptive remeshing thanks to the use of a signed distance function to describe the interface. This opens its application to dynamic fluid-structure simulations. The methodology is validated by computing the equilibrium shapes of two and three-dimensional vesicles, as well as the Clifford torus.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Thibaut METIVET : Connectez-vous pour contacter le contributeur
https://hal.science/hal-02905870
Soumis le : vendredi 27 août 2021-18:19:55
Dernière modification le : mardi 5 novembre 2024-10:54:02
Dates et versions
- HAL Id : hal-02905870 , version 4
- DOI : 10.1016/j.jcp.2021.110288
Citer
Thibaut Métivet, Arnaud Sengers, Mourad Ismail, Emmanuel Maitre. Diffusion-redistanciation schemes for 2D and 3D constrained Willmore flow: application to the equilibrium shapes of vesicles. Journal of Computational Physics, 2021, 436, pp.110288. ⟨10.1016/j.jcp.2021.110288⟩. ⟨hal-02905870v4⟩
357
Consultations
88
Téléchargements