A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution - Inria - Institut national de recherche en sciences et technologies du numérique
Nothing Special   »   [go: up one dir, main page]

Article Dans Une Revue PLoS Computational Biology Année : 2015
A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution
1 VIRTUAL PLANTS - Modeling plant morphogenesis at different scales, from genes to phenotype (INRIA project-team Virtual Plants, joint with CIRAD and INRA UMR AGAP C.C. 06002 95, rue de la Galéra, 34095 Montpellier Cedex 5, France - France)
"> VIRTUAL PLANTS - Modeling plant morphogenesis at different scales, from genes to phenotype
2 UMR AGAP - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (TA A-108 / 03 - Avenue Agropolis - 34398 Montpellier Cedex 5 France - France)
"> UMR AGAP - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales
3 RDP - Reproduction et développement des plantes (bat. LR5 46 Allée d'Italie 69364 LYON CEDEX 07 - France)
"> RDP - Reproduction et développement des plantes
4 ICAR - Image & Interaction (LIRMM, 161 rue Ada, 34000 Montpellier - France)
"> ICAR - Image & Interaction
5 LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (161 rue Ada - 34095 Montpellier - France) "> LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Olivier Hamant
Jan Traas
  • Fonction : Auteur
  • PersonId : 1202606

Résumé

The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth.
Fichier principal
Vignette du fichier
boudon-plos-compbiol15.pdf (1.28 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01142486 , version 1 (15-04-2015)
Identifiants

Citer

Frédéric Boudon, Jérôme Chopard, Olivier Ali, Benjamin Gilles, Olivier Hamant, et al.. A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution. PLoS Computational Biology, 2015, 11 (1), pp.1-16. ⟨10.1371/journal.pcbi.1003950⟩. ⟨hal-01142486⟩
556 Consultations
568 Téléchargements

Altmetric

Partager

More