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Abstract

The purpose of this paper is manifold. In a first part, we present a new
alternating least squares (ALS)-based method for estimating the matrix factors
of a Kronecker product, the so-called Kronecker ALS (KALS) method. Four
other methods are also briefly described. In a second part, we consider the design
of multiple-input multiple-output (MIMO) wireless communication systems
using tensor modelling. Eight systems are presented in a unified way, and
their theoretical performance is compared in terms of maximal diversity gain.
Exploiting a Kronecker product of symbol and channel matrices, and applying
the algorithms introduced in the first part, we propose three semi-blind and
two supervised receivers, called Kronecker receivers, for jointly estimating the
channel and the transmitted symbols. Necessary identifiability conditions are
established. Finally, extensive Monte Carlo simulation results are provided to
compare the performance of three tensor-based systems, on the one hand, and
of the five proposed Kronecker receivers for the tensor space-time-frequency
(TSTF) coding system, on the other hand.

Keywords: Channel estimation; Kronecker product; MIMO systems;
semi-blind receivers; tensor coding; tensor modelling.

1. Introduction

Kronecker products, also known as tensor products, of matrices are currently
used in many signal and image processing applications, like in compressive
sensing with Kronecker dictionaries [1] and for image restoration [2]. They are
useful in system theory [3] and in numerical linear algebra to write and solve
linear matrix equations like Lyapunov and more generally Sylvester equations
[4]. They also play an important role to simplify and implement fast transform
algorithms like fast Fourier, Walsh-Hadamard, and Haar transforms [5, 6].
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Recently, Kronecker and Khatri-Rao (column-wise Kronecker) products have
been extensively employed in tensor-based system analysis and modelling,
since such products naturally appear in matrix unfoldings of basic tensor
decompositions, like the parallel factor (PARAFAC) [7] and Tucker [8] ones, and
more generally of constrained PARAFAC models [9]. Reviews of the history and
applications of the Kronecker product can be found in [3, 10, 5, 6, 11].

In the first part of the paper, we propose a new efficient computational
algorithm based on the alternating least-squares (ALS) method for solving the
Kronecker product approximation problem, i.e. for determining two matrices A
and B of predetermined sizes, whose Kronecker product approximates a given
matrix C in the sense of the minimization of the Frobenius norm ‖C−A⊗B‖F .
We also briefly describe four other methods for solving this problem.

During the last decade, tensorial approaches have been widely developed to
exploit multiple diversities in wireless communication systems. The principle of
diversity techniques is to exploit several copies of the information symbols to
be recovered at the receiver. This symbol repetition can result from multipath
(due to multiantennas at the transmitter and receiver), repeated transmission
of same symbols during several time-slots, and also from specific codings like,
for instance, space-time (ST), space-frequency (SF) or space-time-frequency
(STF) codings, which induce spatial multiplexing and temporal spreading.
Tensor-based multiple-input multiple-output (MIMO) systems allow to improve
link reliability as well as to jointly and semi-blindly estimate the channel and
the transmitted symbols by means of deterministic receivers operating on data
blocks. They have the advantage not to require a priori channel knowledge
and long training sequences for estimating the channel. Only very few pilot
symbols are needed to eliminate scaling ambiguities inherent to each particular
tensor model. Moreover, tensor codings lead to natural tensor formulations of
transmitted and received signals, and consequently to tensor system modellings.
Tensor-based communication systems can be classified according to:

• the type of system (code-division multiple access (CDMA), orthogonal
frequency division multiplexing (OFDM), CDMA-OFDM);

• the type of coding (ST, STF; matrices/tensors);

• the presence (in [12, 13, 14, 15, 16]) or not (in [17, 18, 19, 20, 21, 22]) of
resource allocation, and their type (matrices/tensors);

• the type of tensor model: PARAFAC [17, 18], block PARAFAC [19, 20],
BTD (block term decomposition) [21], CONFAC (constrained PARAFAC)
[12], PARAFAC-Tucker2 (PARATUCK2) [13], PARATUCK-(2,4) [14],
generalized PARATUCK [15, 16], nested PARAFAC [22].

A brief history of tensor-based systems is now reviewed by beginning with
the fundamental work [17], which links direct-sequence CDMA (DS-CDMA)
systems with a PARAFAC model. In [18], a space-time (ST) coding based
on a Khatri-Rao (KR) product, denoted KRST, was derived by combining
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a linear precoding for spatial multiplexing with a linear post-coding for
temporal spreading. In [20], the idea of tensor coding was introduced for
the first time. A three dimensional tensor allows to combine space-time
coding and spatial multiplexing, hence the term space-time multiplexing (STM)
coding. The third-order tensor containing the received signals satisfies a block
constrained PARAFAC model, with two constraint matrices which depend on
the multiplexing parameters.

In [12], a generalized ST spreading scheme was proposed for DS-CDMA
systems, using a precoding tensor which allocates the users’ data streams
and spreading codes to transmit antennas, by means of three resource
allocation matrices. The resulting transmission structure led to a third-order
tensor model, called CONFAC, for the received signals. In [13], space-time
spreading-multiplexing was proposed by combining a matrix precoding with
stream- and antenna-to-slot matrix allocations. The third-order tensor of
received signals then satisfies a PARATUCK2 model. In [14], the system of [13]
was extended by considering a third-order tensor space-time coding, denoted
TST, in order to exploit an extra chip diversity. That leads to a fourth-order
PARATUCK-(2,4) model for the received signals tensor.

More recently, tensor approaches have been developed for OFDM, and
OFDM-CDMA systems. In [22], a double Khatri-Rao STF coding, denoted
DKRSTF, was proposed for OFDM systems. This coding constitutes an
extension of the KRST coding [18], obtained by combining space-frequency
pre-coding with time spreading. The received signals form a fourth-order
tensor satisfying a nested PARAFAC model. In [15], a spatial coding matrix
is combined with two third-order interaction tensors which control a joint
time-frequency allocation of data streams and transmit antennas. In [16], the
case of OFDM-CDMA systems is considered. The tensor space-time-frequency
(TSTF) coding system was developed with the double objective of increasing
the diversity gain by means of a fifth-order coding tensor, which allows to exploit
four diversities (space, time, chip, and frequency) at the receiver, and simplifying
the resource allocation by using a fourth-order allocation tensor to control
the assignment of data streams to transmit antennas in the time-frequency
domain. That leads to a generalized PARATUCK model for the fifth-order
tensor containing the received signals.

The main contributions of this paper are summarized as follows:

• A new algorithm, called Kronecker-based ALS and denoted KALS, is
proposed for solving the Kronecker product approximation problem.

• Eight tensor-based MIMO systems are presented in a unified way, using a
generalized PARATUCK model [16].

• A comparative theoretical performance analysis is carried out for the
considered tensor-based systems, and the maximal diversity gain is derived
under the assumption of flat or frequency-selective fading channels. The
transmission rate and the bandwidth of each system are also given.
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• Five new receivers exploiting a Kronecker product of the channel and
symbol matrices are derived for jointly estimating these matrices, three
being semi-blind and two supervised. A necessary identifiability condition
is established for each system.

• Extensive Monte Carlo simulation results are shown to compare the
performance of three tensor-based systems, with zero-forcing (ZF)
receivers in the case of perfect channel knowledge, on the one hand, and
with the KALS receivers for joint semi-blind symbol/channel estimation,
on the other hand. Then, the performance of the five proposed Kronecker
receivers is compared for the TSTF system.

The rest of the paper is organized as follows. In Section 2, we present
the KALS method for solving the Kronecker product approximation problem.
Four other algorithms are also described. In Section 3, eight tensor-based
systems are presented in a unified way using a generalized PARATUCK tensor
model. In Section 4, a comparative theoretical performance analysis is carried
out for these systems. Section 5 presents five new Kronecker receivers which
use the Kronecker product approximation algorithms introduced in Section
2. Simulation results are shown in Section 6 to illustrate and compare the
performance of the STF, TST, and TSTF systems, and also of the five proposed
Kronecker receivers for the TSTF system. Finally, Section 7 concludes the paper
with some perspectives for future work.

Notations and properties: Scalars, column vectors, matrices, and
higher-order tensors are written with lower-case, boldface lower-case , boldface
upper-case, and calligraphic letters, i.e. (a, a, A, A), respectively. AT, AH,
A∗, and A† stand for transpose, Hermitian transpose, complex conjugate, and

Moore-Penrose pseudo-inverse of A, respectively. e
(N)
n is the n-th canonical

basis vector of RN , IN is the identity matrix of order N , 1N is the N×1 all-ones
column vector, and ‖·‖F is the Frobenius norm. The operator vec(·) forms a
column vector by stacking the columns of its matrix argument, whereas diag(·)
forms a diagonal matrix from its vector argument, and bdiag(A1, . . . ,AK) forms
a block-diagonal matrix with K diagonal blocks. The inverse of the vectorization
operator is denoted unvec, so that x = vec (X) ∈ CJI ←→ X = unvec (x) ∈ CI×J .
By convention, the order of dimensions in a product IJK is linked to the
order of variation of the corresponding indices (i, j, k). For instance, given
a third-order tensor X ∈ CI×J×K with entry xi,j,k, its tall mode-1 matrix
unfolding XJK×I ∈ CJK×I corresponds to a combination of its modes (j,k)
such that j varies more slowly than k, implying xi,j,k = [XJK×I ](j−1)K+k,i.
The Hadamard, Kronecker, and Khatri-Rao products are denoted by �, ⊗, and
�, respectively. Given A ∈ CI×J ,B ∈ CK×L,C ∈ CJ×M ,D ∈ CL×N , we have

(A⊗B) (C⊗D) = (A C)⊗ (B D) ∈ CIK×MN , (1)

A⊗B = (A IJ)⊗ (IK B) = (A⊗ IK) (IJ ⊗B) , (2)

A⊗B = (II A)⊗ (B IL) = (II ⊗B) (A⊗ IL) . (3)
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Given two tensors A ∈ CI1×···×IN×JN+1×···×JN+P and B ∈
CI1×···×IN×KN+1×···×KN+Q , of respective orders N + P and N + Q, we define
the Hadamard product of A with B, along their common modes (i1, · · · , iN ),
as the tensor C = A �

{i1,··· ,iN}
B of order N + P +Q whose entries are given by

ci1,··· ,iN ,jN+1,··· ,jN+P ,kN+1,··· ,kN+Q
= ai1,··· ,iN ,jN+1··· ,jN+P

bi1,··· ,iN ,kN+1,··· ,kN+Q
.

A background with extended bibliography on tensor tools and
decompositions, and their applications, is presented in tutorial papers [23, 9, 24].
Concerning the tensor-based systems considered in this paper, a detailed
presentation can be found in the references given in Table 1.

2. Kronecker Product Approximation Methods

In this Section, we first present a new ALS-based method for estimating
the matrix factors of a Kronecker product, the so-called KALS method. Then,
four other methods for solving this problem are briefly described. In Section 5,
these methods will be employed to derive three semi-blind and two supervised
receivers for seven tensor-based communication systems.

2.1. Kronecker Alternating Least Squares (KALS) method

Consider the Kronecker product of A ∈ CI×J and B ∈ CK×L

C = A⊗B ∈ CIK×JL

∆
=

C(1,1) · · · C(1,J)

...
. . .

...
C(I,1) · · · C(I,J)

 =

 a1,1B · · · a1,JB
...

. . .
...

aI,1B · · · aI,JB

 , (4)

where C(i,j) ∆
= ai,jB ∈ CK×L satisfies the following equation

vec
(
C(i,j)

)
= ai,j vec(B) ∈ CLK×1. (5)

The least-squares (LS) estimate of the coefficient ai,j is given by

âi,j =
(vec(B))

H
vec
(
C(i,j)

)
‖B‖2F

. (6)

Reorganize the entries of C in the Kronecker product D = B⊗A such as

D
∆
= B⊗A = Π(row) C Π(col) ∈ CKI×LJ , (7)

Π(row) and Π(col) denoting row and column permutation matrices defined as

Π(row) ∆
=

K∑
k=1

I∑
i=1

e
(K)
k e

(I)T

i ⊗ e
(I)
i e

(K)T

k ∈ RKI×IK ,

Π(col) ∆
=

J∑
j=1

L∑
l=1

e
(J)
j e

(L)T

l ⊗ e
(L)
l e

(J)T

j ∈ RJL×LJ . (8)
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For the Kronecker product (7), eqs. (5) and (6) become

vec
(
D(k,l)

)
= bk,l vec(A) ∈ CJI×1, (9)

b̂k,l =
(vec(A))

H
vec
(
D(k,l)

)
‖A‖2F

. (10)

The KALS method consists in iteratively and alternately estimating the matrices
A and B using (6) and (10), as summarized in Algorithm 1. Note that the
Kronecker product is characterized by a scalar ambiguity in the sense that
(αA, 1

αB) give the same Kronecker product than (A,B). This scalar ambiguity
can be removed with the knowledge of only one coefficient in A (or B) as shown
in Algorithm 1, where a1,1 is assumed a priori known and used for initialization,

and (Â(∞), B̂(∞)) denote the estimates at convergence.

Algorithm 1: KALS

1. Compute the Kronecker product D from the input matrix C by using (7)-(8).

2. it = 0: Initialize B̂(0) = 1
a1,1

C(1,1).

3. it = it+ 1.
4. Compute for i = 1, ..., I; j = 1, ..., J :

âi,j(it) =
(vec(B̂(it−1)))H vec(C(i,j))

‖B̂(it−1)‖2
F

, b̂k,l(it) =
(vec(Â(it)))H vec(D(k,l))

‖Â(it)‖2
F

.

5. Repeat steps (3)-(4) until convergence.
6. Eliminate the scaling ambiguity with α =

a1,1
â1,1(∞)

:

Â(∞)← α Â(∞), B̂(∞)← 1
α

B̂(∞).

When the Kronecker product C is measured with an additive noise and the
first Ip rows of A are known, i.e. the sub-matrix A1:IP ∈ CIP×J , the matrices
(AIP+1:I ,B) can be estimated using the non iterative method, named Kronecker
product least-squares (KPLS), proposed in [25, 16] and obtained by combining
(6) for estimating AIP+1:I ∈ C(I−IP )×J , with the following equation

B̂ =
1

‖ A1:Ip ‖2F

J∑
j=1

Ip∑
i=1

a∗i,jC
(i,j). (11)

Another method, called supervised KALS and denoted SKALS, consists in using
(11) as the initial value B̂(0) in step 2 of Algorithm 1. These methods SKALS
and KPLS will be exploited in Section 5 for deriving two supervised receivers.

2.2. Kronecker Singular Value Decomposition (KSVD) method

The Kronecker product approximation problem can be solved by computing
a rank-one matrix approximation [26], i.e. by computing the singular vectors
associated with the largest singular value of a matrix built from the vectorization
of the two factors (A,B). Indeed, we have

‖C−A⊗B‖2F = ‖Y − vec(B) (vec(A))T ‖2F = ‖y − vec(A) � vec(B) ‖22, (12)
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where Y ∈ CLK×JI and y = vec(Y) ∈ CJILK×1 can be obtained by permuting
the elements of vec(C) ∈ CJLIK×1 as follows

y = vec(Y) = Π vec(C) ,

Π = IJ ⊗

(
I∑
i=1

L∑
l=1

e
(I)
i e

(L)T

l ⊗ e
(L)
l e

(I)T

i

)
⊗ IK ∈ RJILK×JLIK . (13)

Considering the rank-one approximation Y ≈ σ1uvH, where u and v are the
left and right singular vectors associated with the largest singular value σ1, one
deduces the following estimates Â = α

√
σ1 unvec(v∗), B̂ = 1/α

√
σ1 unvec(u),

where the scalar α is calculated as in Algorithm 1. The power method [27] can
be applied for computing this rank-one approximation of Y. At each iteration,
the right and left singular vectors are calculated as follows

v(it) =
YH u(it− 1)

‖YH u(it− 1)‖2
, σ1(it) = ‖Y v(it)‖2 , u(it) =

Y v(it)

σ1(it)
. (14)

The KSVD method is summarized in Algorithm 2.

Algorithm 2: KSVD

1. it = 0: Initialize û(0) = vec
(
B̂(0)

)
= 1

a1,1
vec(C(1,1)).

2. Compute the matrix Y = unvec(Π vec(C)) with Π defined in (13).
3. it = it+ 1.
4. Compute the rank-one approximation of Y ≈ σ1uvH using (14).
5. Repeat steps (3)-(4) until convergence.
6. Compute the estimates of A and B, with α =

a1,1
â1,1(∞)

:

Â = α
√
σ1(∞) unvec(v∗(∞)), B̂ = 1

α

√
σ1(∞) unvec(u(∞)).

2.3. Kronecker Alternating Least Mean Squares (KALMS) method

In [28], the identities (2)-(3) are exploited to iteratively estimate the factors
(A,B) by applying a Kronecker-based alternating least mean squares (KALMS)
algorithm to the input-output relationship y(it) = C x(it) + e(it) ∈ CIK×1,
which defines a MIMO system from the Kronecker product C = A ⊗ B,
with x(it) ∈ CJL×1 randomly generated. The signal e(it) representing both
measurement noise and modelling error, can be written in the following forms

e(it) = y(it)− (A⊗B) x(it)

= y(it)− (A⊗ IK) (IJ ⊗B) x(it) (15)

= y(it)− (II ⊗B) (A⊗ IL) x(it). (16)

The factors (A,B) are estimated by minimizing the LS cost function ‖e(it)‖22.
This nonlinear optimization problem is replaced by the alternating minimization
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of two quadratic cost functions obtained by fixing one of the factors to its
previous estimated value in (15)-(16), i.e.

zA(it)
∆
=
(
IJ ⊗ B̂(it− 1)

)
x(it) ∈ CJK×1

eA(it)
∆
= y(it)− (A⊗ IK) zA(it)

Â(it) = min
A

E
[
‖eA(it)‖22

] ,


zB(it)

∆
=
(
Â(it)⊗ IL

)
x(it) ∈ CIL×1

eB(it)
∆
= y(it)− (II ⊗B) zB(it)

B̂(it) = min
B

E
[
‖eB(it)‖22

] .

At each iteration, the LMS algorithm is used to update alternately the
estimate of A and B. That results inK and I estimates of A and B, respectively,
due to the presence of the Kronecker products Â(it)⊗IK and II⊗B̂(it). Taking
the mean value of these estimates gives the Algorithm 3.

Algorithm 3: KALMS

1. Set γA and γB.

2. it = 0: Initialize B̂(0) = 1
a1,1

C(1,1) and randomly initialize Â(0).

3. it = it+ 1.
4. Randomly generate the input signal x(it) and compute y(it) = C x(it).

5. Update of the estimate Â(it):

zA(it)
∆
=
(
IJ ⊗ B̂(it− 1)

)
x(it), ZA(it)

∆
=
(

unvec
(
zA(it)

) )T ∈ CJ×K ,

µA(it)
∆
= γA/

∥∥∥zA(it)
∥∥∥2
2
,

eA(it)
∆
= y(it)−

(
Â(it− 1)⊗ IK

)
zA(it), EA(it)

∆
=
(

unvec
(
eA(it)

) )T ∈ CI×K ,

Â(it) = Â(it− 1) + µA(it)
K

EA(it)
(
ZA(it)

)H
.

6. Update of the estimate B̂(it):

zB(it)
∆
=
(
Â(it)⊗ IL

)
x(it), ZB(it)

∆
= unvec

(
zB(it)

)
∈ CL×I ,

µB(it)
∆
= γB/

∥∥∥zB(it)
∥∥∥2
2
,

eB(it)
∆
= y(it)−

(
II ⊗ B̂(it− 1)

)
zB(it), EB(it)

∆
= unvec

(
eB(it)

)
∈ CK×I ,

B̂(it) = B̂(it− 1) + µB(it)
I

EB(it)
(
ZB(it)

)H
.

7. Repeat steps (3)-(6) until convergence.
8. Eliminate the scaling ambiguity with α =

a1,1
â1,1(∞)

:

Â(∞)← α Â(∞), B̂(∞)← 1
α

, B̂(∞).

3. Tensor modelling of MIMO communication systems

We first show that the TSTF coding structure, recently proposed in [16]
for MIMO OFDM-CDMA systems, allows to deduce seven other tensor-based
systems as particular cases.

Consider a MIMO system with M transmit and K receive antennas. The
transmission is decomposed into P time blocks of N symbol periods, each one
being composed of J chips. During each time block p, the transceiver uses F
subcarriers to send R data streams containing N information symbols each,
which form the symbol matrix S ∈ CN×R with entries sn,r, n= 1, ..., N ; r=
1, ..., R. The transmission system is characterized by two tensors: a fifth-order
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coding tensorW ∈ CM×R×F×P×J and a fourth-order resource allocation tensor
C ∈ RM×R×F×P composed uniquely of 1’s and 0’s, cm,r,f,p=1 meaning that the
data stream r is transmitted using the transmit antenna m and the subcarrier
f , during the time-block p. At the symbol period n of block p, the transceiver
transmits a linear combination of R coded signals according to the equation

um,n,f,p,j =

R∑
r=1

wm,r,f,p,j sn,r cm,r,f,p, (17)

where the coefficient cm,r,f,p of the allocation tensor C fixes the space-frequency
resource (m, f) used to send the symbol sn,r during the time block p. So, the
allocation tensor controls the space-time-frequency spreading-mutiplexing. Eq.
(17) shows that the multiplication by the coding tensor W allows to replicate
each symbol sn,r four times, in the space (m), frequency (f), time (p), and
chip (j) dimensions. The high-order of the coding tensor is at the origin of a
performance improvement over other systems such as the ST, STF, and TST
ones. This result will be theoretically established in the next section by a
comparative analysis of the diversity gains.

The frequency-selective fading channel coefficients hk,m,f between each pair
(m, k) of transmit and receive antennas, at frequency f , are assumed constant
during P time-blocks, independent, and circularly symmetric complex Gaussian
variables, with zero-mean and unit variance. They form a third-order tensor
H ∈ CK×M×F . In the noiseless case, the received signals define a fifth-order
tensor X ∈ CK×N×F×P×J defined as

xk,n,f,p,j =

M∑
m=1

hk,m,f um,n,f,p,j =

M∑
m=1

R∑
r=1

gm,r,f,p,j hk,m,f sn,r, (18)

gm,r,f,p,j = wm,r,f,p,j cm,r,f,p.

The core tensor G ∈ CM×R×F×P×J can be interpreted as the Hadamard product
of the coding tensor with the allocation tensor, along their common modes
(m, r, f, p), i.e. G =W �

{m,r,f,p}
C.

The received signal xk,n,f,p,j satisfies the generalized PARATUCK-(2,5)
model introduced in [16], and defined as follows

xi1,i2,i3,i4,i5 =

R1∑
r1=1

R2∑
r2=1

gr1,r2,i3,i4,i5 a
(1)
i1,r1,i3

a
(2)
i2,r2

, (19)

gr1,r2,i3,i4,i5 = wr1,r2,i3,i4,i5 cr1,r2,i3,i4 .

Comparing (18) with (19), we deduce the following correspondences(
I1, I2, I3, I4, I5, R1, R2,A(1),A(2)

)
↔ (K,N,F, P, J,M,R,H,S) . (20)
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Particular cases

In Tables 1 and 2, we present in a unified way eight tensor-based MIMO
systems which can be deduced as particular cases of the TSTF system. In
Table 1, the core tensor G and the received signal tensor X are given for each
system, while Table 2 contains the design parameters for each system rewritten
as a generalized PARATUCK-(2,5) model (19).

Table 1: Presentation of eight tensor-based systems.

Systems Core tensors Received signals

TSTF [16] gm,r,f,p,j = wm,r,f,p,j cm,r,f,p xk,n,f,p,j =
M∑
m=1

R∑
r=1

gm,r,f,p,j hk,m,f sn,r

STF [15] gm,r,f,p = wm,r c
(H)
m,f,p c

(S)
r,f,p xk,n,f,p =

M∑
m=1

R∑
r=1

gm,r,f,p hk,m,f sn,r

TST [14] gm,r,p,j = wm,r,j c
(H)
m,p c

(S)
r,p xk,n,p,j =

M∑
m=1

R∑
r=1

gm,r,p,j hk,m sn,r

ST [13] gm,r,p = wm,r c
(H)
m,p c

(S)
r,p xk,n,p =

M∑
m=1

R∑
r=1

gm,r,p hk,m sn,r

STM [20] gm,r,p = wm,r,p xk,n,p =
M∑
m=1

R∑
r=1

gm,r,p hk,m sn,r

DKRSTF [22] gm,r,f,p = wm,r,f,p = θm,r ωf,r ψp,m xk,n,f,p =
M∑
m=1

M∑
r=1

gm,r,f,p hk,m sn,r

KRST [18] gm,r,p = wm,r,p = θm,r ψp,m xk,n,p =
M∑
m=1

M∑
r=1

gm,r,p hk,m sn,r

DS-CDMA [17] gj,m = wj,m xk,n,j =
M∑
m=1

gj,m hk,m sn,m

Table 2: Design parameters for the associated generalized PARATUCK-(2,5) model.

Systems
Design parameters

I1 I2 I3 I4 I5 R1 R2 A(1) A(2) C W

TSTF [16] K N F P J M R H S C W
STF [15] K N F P - M R H S C(H), C(S) W

TST [14] K N P J - M R H S C(H),C(S) W
ST [13] K N P - - M R H S C(H),C(S) W

STM [20] K N P - - M R H S - W
DKRSTF [22] K N F P - M M H S - W

KRST [18] K N P - - M M H S - W
DS-CDMA [17] K N J - - M - H S - W

From these two tables, we can draw the following conclusions:

• Two main features distinguish TSTF from the other systems. The first
one concerns the use of a fifth-order tensor (W) for space-time-frequency
coding, instead of a fourth-order (or third-order) coding tensor for
DKRSTF (or TST, STM, and KRST), respectively, or of a coding
matrix in the case of STF, ST, and DS-CDMA. The five dimensional
coding tensor allows to increase the diversity gain, which facilitates
performance/complexity tradeoffs in all the signaling dimensions. The
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second one is linked to the use of a fourth-order allocation tensor (C),
while the other systems use either two third-order tensors as with STF,
or two matrices as with ST and TST. The use of a single fourth-order
allocation tensor provides higher flexibility for allocations.

• The TSTF system can be viewed as an OFDM extension of the TST
system with a multicarrier transmission, and a CDMA extension of the
STF system. It can also be viewed as an extension of the DKRSTF system
which is itself an extension of the KRST one. Indeed, for KRST coding,
the coded signals define a third-order tensor U ∈ CM×N×P such as

um,n,p =

M∑
r=1

θm,r ψp,m sn,r , UNP×M = SΘT � Ψ, (21)

while for the DKRSTF coding, the tensor U ∈ CM×N×F×P is such as

um,n,f,p =

M∑
r=1

θm,r ωf,r ψp,m sn,r , UNFP×M = (S �Ω)ΘT � Ψ. (22)

This matrix unfolding highlights the double Khatri-Rao STF coding,
the first one corresponding to a space-frequency pre-coding, whereas the
second one corresponds to a time post-coding.
These Eqs. (21) and (22) are to be compared with (17), showing that the
KRST and DKRSTF systems exploit third- and fourth-order coded signals
tensors, respectively, when TSTF uses a fifth-order coding tensor. Note
also the restrictive assumption for DKRSTF which requires the channel
H ∈ CK×M constant across the F subcarriers, while it is a third-order
tensor H ∈ CK×M×F depending on the F frequencies, in the case of
TSTF. Another restriction shared by DKRSTF and KRST concerns the
number of transmitted data streams which must be equal to the number
of transmit antennas (R=M), which is not the case of the other systems.

• In their original formulation, the received signals tensors satisfy the
following tensor models: PARAFAC, block PARAFAC, nested PARAFAC,
PARATUCK2, PARATUCK-(2,4), and generalized PARATUCK-(2,5) for
the (DS-CDMA, KRST), STM, DKRSTF, ST, TST, and (STF,TSTF)
systems, respectively. Moreover, all the systems use iterative ALS-based
receivers for jointly estimating the channel and the information symbols.

• The rewriting of the received signals tensors presented in Table 1, by means
of generalized PARATUCK models, will allow us to derive closed-form
receivers for all systems, in Section 5. These receivers are based on the
same Kronecker product between the symbol matrix (S) and the channel
matrix (H or HK×FM ), as summarized in Table 4.

Now, we recall two matrix unfoldings of the tensor X which will be used in
Sections 4 and 5 for deriving the diversity gain and the Kronecker receivers of

11



the TSTF system (See eqs. (15) and (19) in [16])

XN×JPFK = S GR×JPFM

(
IJP⊗ bdiag

(
HT
··1, · · · ,HT

··F
))
, (23)

XNK×FPJ = (S⊗HK×FM ) GRFM×FPJ , (24)

with

GR×JPFM
∆
=
[

GT
··1,1,1 · · · GT

··F,P,J

]
∈ CR×JPFM ,

GRFM×FPJ
∆
=



bdiag




vec
(
GT

1,1,1··
)T

...

vec
(
GT
M,1,1··

)T
 , · · · ,


vec
(
GT

1,1,F ··
)T

˜
...

vec
(
GT
M,1,F ··

)T



...

bdiag




vec
(
GT

1,R,1··
)T

...

vec
(
GT
M,R,1··

)T
 , · · · ,


vec
(
GT

1,R,F ··
)T

...

vec
(
GT
M,R,F ··

)T




,

G··f,p,j = W··f,p,j �
{m,r}

C··f,p, Gm,r,f ·· = Wm,r,f ·· �
{p}

cm,r,f · (25)

where HK×FM is a matrix unfolding of the channel tensor H ∈ CK×M×F , and
H··f ∈ CK×M is a matrix slice obtained by fixing the index f of H, which
corresponds to the channel matrix associated with the subcarrier f . Similarly,
{G··f,p,j ,W··f,p,j ,C··f,p} ∈ CM×R denote matrix slices of {G,W, C}, obtained
by fixing (f, p, j), whereas {Gm,r,f ··,Wm,r,f ··} ∈ CP×J and cm,r,f · ∈ CP×1

denote matrix slices of {G,W}, and a vector slice of C, respectively, obtained
by fixing (m, r, f).

4. Performance analysis

We first analyze the theoretical performance of the TSTF system by deriving
its diversity gain. For this system, it is possible to jointly estimate the
information symbols and the channel, without decoding of a codeword as
required by standard ST and STF codings. The performance analysis is based on
the pairwise error probability (PEP) of the maximum likelihood (ML) estimator
of the symbol matrix S. The diversity gain d is defined as the negative of the
asymptotic slope of the plot PEP(ρ) on a log-log scale, where ρ denotes the
received signal-to-noise ratio (SNR). We assume that the receiver has perfect
knowledge of the channel, allocation, and coding tensors.

Let us recall that the average PEP between S and Ŝ, conditioned on channel
realizations, is given by [29, 30]

P
(
S→ Ŝ

)
= Q

(
1

2
√
N0/2

‖X − X̂‖F

)
=

1

π

∫ π
2

0

exp

(
− ‖X − X̂‖

2
F

4N0 sin2(β)

)
dβ, (26)
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where N0/2 is the noise variance per (real and imaginary) dimension and Q(·)
is the complementary cumulative distribution function of a Gaussian variable,
written using the Craig’s formula [30]. Fixing the indices (f, p, j) in (18) gives

X··f,p,j = H··f U··f,p,j = H··f G··f,p,j ST ∈ CK×N . (27)

Defining the estimation error of codeword matrix slices

E(f,p,j) ∆
= U··f,p,j − Û··f,p,j = G··f,p,j

(
S− Ŝ

)T

∈ CM×N (28)

and using (27), we have

‖X − X̂‖2F =

F∑
f=1

P∑
p=1

J∑
j=1

‖X··f,p,j − X̂··f,p,j‖2F =

F∑
f=1

P∑
p=1

J∑
j=1

‖H··f E(f,p,j)‖2F

=

F∑
f=1

P∑
p=1

J∑
j=1

tr
(
H··f A(f,p,j) HH

··f

)
=

F∑
f=1

P∑
p=1

J∑
j=1

y(f,p,j), (29)

where A(f,p,j) ∆
= E(f,p,j)

(
E(f,p,j)

)H
is Hermitian nonnegative definite, and

y(f,p,j) ∆
= tr

(
H··f A(f,p,j) HH

··f

)
=
[
vec
(
HT
··f
) ]T(

IK ⊗A(f,p,j)
)

vec
(
HH
··f
)
.

The channel coefficients hk,m,f being assumed i.i.d and drawn from a circular
symmetric complex Gaussian distribution with zero-mean and unit variance,
application of the theorem E.1 on page 418 of [31] leads to

P
(
S→ Ŝ

)
=

1

π

∫ π
2

0

F∏
f=1

P∏
p=1

J∏
j=1

[
det

(
IM +

1

4N0 sin2(β)
A(f,p,j)

)]−K
dβ.

In order to simplify the calculation of the integral, we use the Chernoff bound
[30, 31], obtained by taking sin2(β) = 1, which gives the following upper bound

P
(
S→ Ŝ

)
≤

F∏
f=1

P∏
p=1

J∏
j=1

[
det

(
IM +

1

4N0
A(f,p,j)

)]−K
. (30)

Since det(I + αA) =
∏rank(A)
i=1 (1 + αλi(A)), where λi(A) denotes an

eigenvalue of A, we can rewrite (30) as

P
(
S→ Ŝ

)
≤

F∏
f=1

P∏
p=1

J∏
j=1

r(f,p,j)∏
i=1

(
1 +

1

4N0
λ

(f,p,j)
i

)−K
, (31)
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where λ
(f,p,j)
i denotes the non-zero eigenvalues of A(f,p,j), and r(f,p,j) ∆

=
rank

(
A(f,p,j)

)
= rank

(
E(f,p,j)

)
. At high SNR, i.e. for small values of N0, the

upper bound on the PEP becomes

P
(
S→ Ŝ

)
≤

F∏
f=1

P∏
p=1

J∏
j=1

r(f,p,f)∏
i=1

(
λ

(f,p,j)
i

)−K ( 1

4N0

)−K ∑
f,p,j

r(f,p,j)

, (32)

which gives the following diversity gain

dTSTF = K

F∑
f=1

P∑
p=1

J∑
j=1

r(f,p,j). (33)

Assuming S is full column rank, which implies N ≥ R (or N ≥M for KRST
and DKRSTF), and applying the property rank(AB) ≤ min(rank(A) rank(B)),
we deduce from (28) that r(f,p,j) = rank

(
E(f,p,j)

)
≤ min(M,R), ∀f, p, j. It is

interesting to note from (25) and (28) that the maximum rank of G··f,p,j , and
consequently of E(f,p,j), depends on the allocation tensor C.

Define α(f,p) and β(f,p) as the numbers of transmit antennas used and of data
streams transmitted with the subcarrier f , during the time block p. Noting that
C··f,p, and consequently G··f,p,j for all j, have M−α(f,p) zero rows and R−β(f,p)

zero columns, we deduce that r(f,p,j) = rank(G··f,p,j) ≤ min
(
α(f,p), β(f,p)

)
for

all j. So, a maximal diversity gain is given by:

dTSTF
max = KJ

F∑
f=1

P∑
p=1

min
(
α(f,p), β(f,p)

)
. (34)

The expression (34) can be upper bounded by dTSTF
max =KFPJ min(M,R) when

choosing α(f,p) = M , β(f,p) = R, for all (f, p), which includes a full allocation
strategy corresponding to the case where all data streams are transmitted by all
antennas, using all subcarriers, during each time block p. Therefore, the TSTF
coding provides higher diversity gain than standard matrix ST coding schemes
that ensure a maximal diversity gain equal to KM . Moreover, for fixed numbers
(K and M) of receive and transmit antennas, the maximal diversity gain dTSTF

max

can be increased by increasing the design parameters F , P , and J .
The diversity gain and the maximal diversity gain for the other systems

can be easily deduced from (33)-(34), using the unified presentation in Table
1, which leads to the results presented in Table 3, where α(p) and β(p) (α(f,p)

and β(f,p)) denote the number of non-zero elements of c
(H)
·p and c

(S)
·p (c

(H)
·f,p and

c
(S)
·f,p), for TST and ST (STF, respectively).

Remark that, in the case of DKRSTF, KRST and DS-CDMA, the maximal
diversity gain is proportional to M since the number of data streams is equal
to the number of transmit antennas (R=M) for these systems.

Note also that for a full allocation strategy (α(f,p) =α(p) =M , β(f,p) =β(p) =
R, for all p ∈ {1, ..., P} and f ∈ {1, ..., F}), i.e. in choosing all the entries of
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the allocation matrix/tensor equal to 1, the maximal diversity gains are upper
bounded by dSTF

max = KFP min(M,R), dTST
max = KJP min(M,R), and dST

max =
KP min(M,R), showing that the TSTF coding provides the highest diversity
gain. Comparing TST and STF, with F = J , we conclude that dSTF

max = dTST
max .

However, when all the subcarriers are not used, we have dSTF<dTST, explaining
why the TST system offers better performance than STF when full frequency
allocation is not considered.

Table 3: Diversity gains

Systems Diversity gains Maximal diversity gains τ

TSTF [16]
K

F∑
f=1

P∑
p=1

J∑
j=1

rank

(
G··f,p,j

(
S− Ŝ

)T
)

KJ
F∑
f=1

P∑
p=1

min
(
α(f,p), β(f,p)

)
R
FP

G··f,p,j = W··f,p,j �
{m,r}

C··f,p

STF [15]
K

F∑
f=1

P∑
p=1

rank

(
G··f,p

(
S− Ŝ

)T
)

K
F∑
f=1

P∑
p=1

min
(
α(f,p), β(f,p)

)
R
FP

G··f,p = diag
(
c
(H)
·f,p

)
W diag

(
c
(S)
·f,p

)
TST [14]

K
J∑
j=1

P∑
p=1

rank

(
G··p,j

(
S− Ŝ

)T
)

KJ
P∑
p=1

min
(
α(p), β(p)

)
R
P

G··p,j = diag
(
c
(H)
·p

)
W··j diag

(
c
(S)
·p

)
ST [13]

K
P∑
p=1

rank

(
G··p

(
S− Ŝ

)T
)

K
P∑
p=1

min
(
α(p), β(p)

)
R
P

G··p = diag
(
c
(H)
·p

)
W diag

(
c
(S)
·p

)
STM [20]

K
P∑
p=1

rank

(
G··p

(
S− Ŝ

)T
)

KP min(M,R) R
P

G··p = W··p

DKRSTF [22]
K

F∑
f=1

P∑
p=1

rank

(
G··f,p

(
S− Ŝ

)T
)

KFPM M
FP

G··f,p = diag(ψp·)Θ diag(ωf·)

KRST [18] K
P∑
p=1

rank

(
G··p

(
S− Ŝ

)T
)

KPM M
P

G··p = diag(ψp·)Θ

DS-CDMA [17] K
J∑
j=1

rank

(
diag(gj·)

(
S− Ŝ

)T
)

KJM M

The transmission rate, in bits per channel use, is given by Rb = τ log2(µ),
where µ denotes the cardinality of the symbol alphabet set, i.e. the number
of constellation points, and the ratio τ is given in Table 3 for all systems.
As expected, for STF and TSTF, an increase of P and/or F decreases the
transmission rate, while an increase of R increases it. For TSTF, TST, STF
and ST, the bandwidth is given by, FJ

T , J
T , F

T , and 1
T , respectively, where T is

the symbol period.

5. Kronecker semi-blind receivers

Assuming a perfect knowledge of the coding and allocation matrices/tensors
at the receiver, we propose five receivers for all the systems presented in
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Section 3. These receivers based on a Kronecker product approximation use the
algorithms described in Section 2. So, they are called KALS, SKALS, KPLS,
KSVD, and KALMS. Note that SKALS and KPLS correspond to supervised
receivers since they use a pilot sequence constituted by the first Np rows of S.
In the sequel, we detail the Kronecker receivers for the TSTF system, the matrix
unfolding (24) being exploited to jointly estimate the symbol matrix S and the
unfolding HK×FM of the channel tensor. Similar Kronecker receivers can be
easily derived for the other systems using the matrix unfoldings given in Table
4. Note that, for TST, ST, STM, KRST, and DKRSTF, the unfolding HK×FM
is replaced by the channel matrix H.

Table 4: Matrix unfoldings of the received signals tensor X .

Systems Unfoldings with a Kronecker Product
Identifiability

conditions

TSTF
XNK×FPJ = (S⊗HK×FM ) GRFM×FPJ PJ ≥MR
GRFM×FPJ ∈ CRFM×FPJ defined in (25)

STF†
XNK×FP = (S⊗HK×FM ) GRFM×FP

P ≥MRGRFM×FP = Π bdiag
(
G(1), . . . ,G(F )

)
∈ CRFM×FP

G(f) ∆
=

((
C

(S)
·f · �C

(H)
·f ·

)T
� vecT(W)

)T

∈ CRM×P , ∀f

TST
XNK×PJ = (S⊗H) GRM×PJ PJ ≥MR

GRM×PJ
∆
=
((

C(S) �C(H)
)T �WJ×RM

)T
∈ CRM×PJ

ST
XNK×P = (S⊗H) GRM×P P ≥MR

GRM×P
∆
=
((

C(S) �C(H)
)T � vecT(W)

)T
∈ CRM×P

STM XNK×P = (S⊗H) WRM×P P ≥MR

KRST
XNK×P = (S⊗H) GRM×P P ≥MR

GRM×P
∆
=
((

1T
R ⊗Ψ

)
� vecT(Θ)

)T ∈ CRM×P

DKRSTF
XNK×FP = (S⊗H) GRM×FP FP ≥MR

GRM×FP
∆
=
(
(Ω⊗Ψ) � vecT(Θ)

)T ∈ CRM×FP
† Π denotes a (RFM × FRM) permutation matrix which can be easily deduced from (8).

5.1. Kronecker receivers for the TSTF system

In the case of TSTF, assuming that GRFM×FPJ is full row-rank to be right
invertible, the LS estimate of the Kronecker product in (24) is given by

YNK×RFM
∆
= S⊗HK×FM = XNK×FPJ G†RFM×FPJ ∈ CNK×RFM (35)

=


Y

(1,1)
K×FM · · · Y

(1,R)
K×FM

...
. . .

...

Y
(N,1)
K×FM · · · Y

(N,R)
K×FM

 , with Y
(n,r)
K×FM

∆
= sn,r HK×FM .

The matrix factors (S,HK×FM ) of the Kronecker product YNK×RFM can be
estimated using the algorithms described in Section 2.
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For applying the KALS method described in Algorithm 1, we have to

compute the Kronecker product D = YKN×FMR
∆
= HK×FM ⊗ S given by

YKN×FMR = Π(row) YNK×RFM Π(col) =


Y

(1,1)
N×R · · · Y

(1,FM)
N×R

...
. . .

...

Y
(K,1)
N×R · · · Y

(K,FM)
N×R

 (36)

Y
(k,mf )
N×R

∆
= hk,m,f S, with mf

∆
= m+ (f − 1)M ∈ [1, . . . , FM ],

where the permutation matrices Π(row) and Π(col) can be easily deduced from
(8) with the following correspondences {I, J,K,L} ←→ {N,R,K, FM}. Note
that the scalar ambiguity inherent to the Kronecker product can be removed
by the knowledge of only one symbol at the receiver. Algorithms 4, 5, and
6 describe the semi-blind KALS, KSVD, and KALMS receivers for the TSTF
system. The matrix ỸNK×RFM denotes a noisy version of YNK×RFM defined in
(35), with XNK×FPJ replaced by X̃NK×FPJ , an unfolding of the noisy received
signal tensor X̃ = X + σV, where V is an additive noise tensor, and σ is adjusted
according to the desired SNR.

When a training sequence S1:Np ∈ CNp×R composed of the first Np rows
of S, is used, the supervised receiver SKALS is obtained in replacing the

initialization by ĤK×FM (0) = 1
‖S1:Np‖2F

∑Np
n=1

∑R
r=1 s

∗
n,rỸ

(n,r)
K×FM in step 2 of

Algorithm 4. The supervised receiver KPLS is described in Algorithm 7.

From Algorithms 4-7, we remark that:

• The KALS, SKALS and KALMS receivers which are based on the ALS
and ALMS algorithms, respectively, are iterative, whereas the KPLS and
KSVD ones are closed-form solutions. However, due to the application of
the power method for computing the rank-one approximation, KSVD is
also iterative. Its convergence speed depends on the ratios σi

σ1
, and more

particularly the ratio σ2

σ1
, the singular values σi for i > 1 being introduced

by the additive noise tensor V.

• The KALS, SKALS and KSVD receivers need to apply permutation
matrices, which is not the case of KPLS and KALMS.
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Algorithm 4: Semi-blind KALS receiver

1. Compute the LS estimate ỸNK×RFM = X̃NK×FPJ GRFM×FPJ
†

and ỸKN×FMR using (36), with YNK×RFM replaced by ỸNK×RFM .

2. it = 0: Initialize ĤK×FM (0) = 1
s1,1

Ỹ
(1,1)
K×FM .

3. it = it+ 1.

4. Compute Ŝ(it):

ŝn,r(it) =
vec(ĤK×FM (it−1))H vec

(
Ỹ

(n,r)
K×FM

)
‖ĤK×FM (it−1)‖2

F

.

5. Compute ĤK×FM (it):

ĥk,m,f (it) =
vec(Ŝ(it))H vec

(
Ỹ

(k,mf )

N×R

)
‖Ŝ(it)‖2

F

, mf = m+ (f − 1)M .

6. Repeat steps (3)-(5) until convergence.
7. Eliminate the scaling ambiguity with α = s1,1/̂s1,1(∞) :

Ŝ(∞)← α Ŝ(∞), ĤK×FM (∞)← 1
α

ĤK×FM (∞).
8. Project the estimated symbols onto the symbol alphabet.

Algorithm 5: Semi-blind KSVD receiver

1. Compute the LS estimate ỸNK×RFM as in step (1) of Alg. 4, and

ỸFMK×RN = unvec
(
Π vec(ỸNK×RFM )

)
, with (13) and (20).

2. it = 0: Initialize û(0) = vec
(
ĤK×FM (0)

)
= 1

s1,1
vec(Ỹ

(1,1)
K×FM ).

3. Compute the rank-one approximation of ỸFMK×RN using steps (3)-(5) of Alg. 2.
4. Compute the estimates of S and HK×FM , with α = s1,1/̂s1,1(∞):

Ŝ = α
√
σ1(∞) unvec(v∗(∞)), ĤK×FM = 1

α

√
σ1(∞) unvec(u(∞)).

5. Project the estimated symbols onto the symbol alphabet.

Algorithm 6: Semi-blind KALMS receiver

1. Set γS and γH.

2. Compute the LS estimate of C = ỸNK×RFM as in step (1) of Alg. 4.

3. it = 0: Initialize ĤK×FM (0) = 1
s1,1

Ỹ
(1,1)
K×FM and randomly initialize Ŝ(0).

4. it = it+ 1.
5. Randomly generate the input signal x(it) and compute y(it) = C x(it).

6. Compute Ŝ(it) and ĤK×FM (it) as in steps (5)-(6) of Alg. 3.
7. Repeat steps (4)-(6) until convergence.
8. Eliminate the scaling ambiguity as in step (7) of Alg. 4.
9. Project the estimated symbols onto the symbol alphabet.

Algorithm 7: Supervised KPLS receiver

1. Compute the LS estimate ỸNK×RFM as in step (1) of Alg. 4.
2. Compute the LS estimate of HK×FM :

ĤK×FM = 1
‖S1:Np‖

2
F

∑Np
n=1

∑R
r=1 s

∗
n,rỸ

(n,r)
K×FM .

3. Compute the LS estimate of SNp+1:N :

ŝn,r =
vec(ĤK×FM)H vec

(
Ỹ

(n,r)
K×FM

)
‖ĤK×FM‖2F

, n = Np + 1, · · · , N ; r = 1, · · · , R.

4. Project the estimated symbols onto the symbol alphabet.
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5.2. Identifiability conditions

For TSTF, the identifiability condition is linked with the calculation of the
LS estimate (35) of the Kronecker product, that is the full row-rank property
of GRFM×FPJ . Premultiplying this expression by the permutation matrix

Π
∆
=

FM∑
l=1

R∑
r=1

e
(FM)
l e(R)

r

T
⊗ e(R)

r e
(FM)
l

T
∈ RFMR×RFM , (37)

GRFM×FPJ can be rewritten as the following block-diagonal matrix:

Π GRFM×FPJ = bdiag
(
G

(1)
MR×PJ , · · · ,G

(F )
MR×PJ

)
∈ CFMR×FPJ , (38)

where G
(f)
MR×PJ corresponds to a matrix unfolding of the core tensor G ∈

CM×R×F×P×J obtained by fixing f , and by combining its first two modes on
the rows and its last two modes on the columns. As the premultiplication by
the permutation matrix Π does not modify the row rank, one concludes that

GRFM×FPJ is full row-rank if and only if all diagonal blocks G
(f)
MR×PJ are

themselves full row-rank, which implies the necessary condition PJ ≥ MR.
From the unfoldings given in Table 4, it is easy to deduce the identifiability
condition for the other systems, as summarized in Table 4. From these results,
one can conclude that TST and TSTF are more flexible than ST ant STF in
terms of identifiability.

All the results previously established for TSTF imply that the desired
transmission rate Tr and bandwidth B determine the design parameters
(F, P, J,R) and the modulation µ-phase shift-keying (PSK) through Tr =
R
FP log2 µ and B = FJ

T , under the constraint PJ ≥ MR representing the
identifiability condition, with an achievable maximal diversity gain equal to
KFPJ min(M,R).

Recall that diversity techniques are employed to combat the impact of
channel fading on the bit error rate (BER), by providing to the receiver
several versions of each transmitted symbol. For TSTF, four diversities
(frequency, time, chip, space) are simultaneously exploited owing the tensor
coding, combined with the use of multiple antennas and multiple carriers.
That explains the expression of the maximal diversity gain as a function of
(F, P, J,K,M). Note that the diversity gain, directly linked with the BER, and
the multiplexing gain, proportional to the data rate, cannot be simultaneously
maximized. That corresponds to the well-known diversity-multiplexing tradeoff.
In our simulations, the diversity gain will be exploited to determine the design
parameters, with a fixed transmission rate identical for all the systems to be
compared. In practice, the adjustment of the design parameters must take into
account some system constraints such as an a priori fixed number of transmit
and receive antennas, an available bandwidth, or a desired transmission rate.
So, the expressions of the diversity gains, of the transmission rates, and of the
bandwidths, derived in Section 4 for all the considered systems, as functions
of (F, P, J,M,R,K), can help the user to choose these design parameters.
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The impact of an increase of these parameters on the transmission rate, the
bandwidth, and the BER, is summarized in Table 5, where the signs + and -
mean an increase and a decrease of transmission rate and bandwidth, and a
performance improvement and degradation, respectively.

Table 5: Impact of the design parameters (F, P, J,M,R,K) on data rate/bandwidth/BER.

Increase of design parameters Data rate Bandwidth BER

Number of subcarriers (F ) − + +
Number of data blocks (P ) − +
Length of spreading code (J) + +
Number of transmit antennas (M) +
Number of data streams (R) + −
Number of receive antennas (K) +

5.3. Comparative complexity analysis
For TSTF, the Kronecker receivers involve the computation of one

pseudo-inverse for the LS estimation of the Kronecker product S ⊗ HK×FM ,
which represents the most costly operation. Using the full allocation strategy
(C = 1M×R×F×P , a fourth-order tensor composed of ones) and a Vandermonde
structure for GRFM×FPJ allows to simplify the calculation of its pseudo-inverse,
with a complexity in O

(
F 2JKMNPR

)
complex multiplications, common to

all the receivers. Besides this computation, the non-iterative KPLS receiver
requires O(FKMNR) multiplications to estimate the symbols and the channel,
while the iterative (KALS, SKALS, KSVD), and KALMS receivers require
O(FKMNR), and O(FKMN +KRN) multiplications at each iteration,
respectively.

In Table 6, we present the computational cost of the receivers, taking into
account the iterations number Nit for convergence of the iterative methods.
From this table, one concludes that the supervised non-iterative KPLS receiver is
the least costly, whereas the three non-supervised receivers have approximately
the same computational cost per iteration.

Table 6: Computational complexity of TSTF

Receivers Computational cost

KPLS O
(
F 2JKMNPR + FKMNR

)
KALS O

(
F 2JKMNPR +Nit (FKMNR)

)
KSVD O

(
F 2JKMNPR +Nit (FKMNR)

)
KALMS O

(
F 2JKMNPR +Nit (FKMN +KNR)

)

6. Simulation results

The simulations have two main goals. First, we compare the performance of
three tensor-based systems (TSTF, TST, STF), with two issues:
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(i) Perfect channel knowledge at the receiver, i.e. using the zero-forcing (ZF)
receivers given in Table 7, deduced from (23) and the tensor models in
Table 1, with full allocation. Fig. 1 illustrates the impact of the design
parameters (F, P, J) on the BER of each system, versus SNR, for the same
bandwidth and transmission rate. See Subsection 6.1.

(ii) Joint channel/symbols estimation using the KALS receivers, with random

allocations, except a full frequency allocation and cm,r,f,1 =c
(H)
m,f,1 =c

(S)
r,f,1 =

c
(H)
m,1 = c

(S)
r,1 = 1,∀(m, r, f), for ensuring each data stream is sent at least

once (during the first time block p=1). Fig. 2 shows the impact of the
design parameters on system identifiability and the BER, with the same
transmission rate, inducing different modulation formats, and two different
bandwidths and numbers of data streams (B = 4/T,R ∈ {2, 4} in the left
figure, and B = 8/T,R ∈ {4, 8} in the right figure). See Subsection 6.2.

Table 7: ZF Receivers

Systems Estimation of the symbol matrix S

TSTF
Ŝ = X̃N×JPFK

(
GR×JPFM

(
IJP ⊗ bdiag

(
HT
··1, · · · ,HT

··F
)))†

GR×JPFM
∆
=
[

GT
··1,1,1 · · · GT

··F,P,J

]
G··f,p,j = W··f,p,j �

{m,r}
C··f,p

STF
Ŝ = X̃N×PFK

(
GR×PFM

(
IP ⊗ bdiag

(
HT
··1, · · · ,HT

··F
)))†

GR×PFM
∆
=
[

GT
··1,1 · · · GT

··F,P

]
G··f,p = W �

{m,r}

(
c

(H)
·f,pc

(S)T

·f,p

)
TST

Ŝ = X̃N×JPK
(
GR×JPM

(
IJP ⊗HT

))†
GR×JPM

∆
=
[

GT
··1,1 · · · GT

··P,J

]
G··p,j = W··j �

{m,r}

(
c

(H)
·p c

(S)T

·p

)

Second, several points are analyzed for the TSTF system considering the full
allocation strategy (except for the first item (i)):

(i) Impact of allocations on the BER of each transmitted data stream taken
separately, using the ZF receiver. See Subsection 6.3;

(ii) Impact of the pilot sequence length on the BER and channel NMSE
obtained with the SKALS and KPLS receivers. See Subsection 6.4;

(iii) Comparison of the five proposed Kronecker receivers in terms of BER,
channel and reconstruction NMSEs, and convergence speed. See
Subsection 6.5.

The reconstruction NMSE is evaluated in terms of the Kronecker product
estimate ŶNK×RFM = Ŝ ⊗ ĤK×FM averaged over 2000 Monte Carlo runs.
For all the simulations with the Kronecker receivers, a maximum number of
100 iterations was fixed, which ensures the convergence as shown in Figure
6. The transmitted symbols are randomly drawn from a 16-PSK alphabet,
except in Subsection 6.2. The spreading code (W or W) is constructed with
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a Vandermonde structure ensuring the existence of the pseudo-inverse required
by the ZF and Kronecker receivers. Flat Rayleigh fading channels for the TST
system, and frequency-selective Rayleigh fading channels for STF and TSTF
were simulated. As mentioned in Subsection 5.1, the noisy received signals
tensor is given by X̃ = X + σV, the elements of V being zero-mean complex
valued Gaussian variables with unit variance, and σ being adjusted according
to the desired SNR defined as SNRdB = 10 log10(‖X‖2F /‖σV‖

2
F ).

6.1. Impact of the design parameters (F, P, J) with ZF receivers

Fig. 1 plots the BER versus SNR, obtained with the ZF receivers, in the
case of full allocation, with the same transmission rate (1 bit/channel use) and
bandwidth (4/T ), for all systems. From this figure, one can conclude that:

• As expected, TSTF with (F, P, J) = (4, 2, 1) and STF with (F, P ) = (4, 2)
give nearly the same BER since both systems are characterized by the
same diversity gain with FPJ=8. Similarly, TSTF with (F, P, J)=(1, 8, 4)
and TST with (P, J) = (8, 4) provide close BERs, with FPJ = 32, which
explains the performance improvement.

• To illustrate the impact of the product FPJ on the BER performance,
i.e. the diversity gain, we simulated TSTF with three sets of parameters
(F, P, J) = {(4, 2, 1), (2, 4, 2), (1, 8, 4)}, corresponding to three different
values of FPJ = {8, 16, 32}, with the same transmission rate and
bandwidth. We observe a SNR gap of around 7.5dB for a BER value
of 10−3, when the value of FPJ is multiplied by 4 (from 8 to 32).

• The TSTF system allows more flexibility for choosing the design
parameters, depending on available bandwidth, desired transmission rate,
and fixed numbers of antennas. This flexibility is brought by the fifth-order
coding tensor which exploits four spreading dimensions (space, frequency,
time, chip) for each data stream, whereas the TST and STF systems
exploit only three spreading dimensions.

6.2. Impact of the design parameters (F, P, J) with KALS receivers

Fig. 2 shows the BER versus SNR obtained with the KALS receivers of the
three considered systems, with the same transmission rate (1 bit/channel use),
two different bandwidths (B=4/T and 8/T ), and two different numbers of data
streams (R ∈ {2, 4} and R ∈ {4, 8}), for the left and right figures, respectively.
From these simulation results, one can draw the following conclusions:

• The STF design parameters ((P, F ) = (2, 4) for R = 2, and (P, F ) = (2, 8)
for R = 4, with a 16-PSK modulation), do not satisfy the identifiability
condition (P ≥ MR) which explains the bad BER performance. An
alternative solution consists in applying the Levenberg-Marquardt-based
receiver proposed in [15], which is much more complex to implement than
the KALS receiver. Note that an increase of P allows to satisfy the
identifiability condition at the cost of a data rate decrease.
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Figure 1: ZF receivers: Impact of the design parameters (F, P, J) on the BER.

• In contrast, TST and TSTF give good BER performances, with PJ ∈
{4, 8, 16, 32} such that PJ ≥ MR, which shows these two systems are
more flexible for satisfying the identifiability condition owing the chip
diversity J . On the left figure, we consider a bandwidth B = 4/T , and
two different values of R. For R = 2, TST with (P, J) = (2, 4) and
TSTF with (F, P, J) = (2, 2, 2) are characterized by the same diversity
gain, which induces close BER performance. The same behaviour occurs
for R = 4, TST with (P, J) = (4, 4) and TSTF with (F, P, J) = (2, 4, 2).
Note that TST is used with a BPSK modulation, while TSTF uses a
QPSK modulation for ensuring the same data rate. On the right figure,
corresponding to B = 8/T , TST and TSTF use the same modulation
(BPSK). TSTF provides a better BER performance with a SNR gap of
2dB and 3dB, for a BER value of 10−3, in the cases R = 8 and R = 4,
respectively. This improvement is due to the full frequency allocation. As
expected, the BER increases when the number of data streams is increased
from 2 to 4 (left figure), and from 4 to 8 (right figure).

6.3. TSTF-ZF receiver: Impact of the allocations

Consider three different allocation tensors C ∈ CM×R×F×P , for f ∈ {1, 2, 3}:

Case 1: Case 2: Case 3:

C
(f)
MR×P =


1 1 1
1 0 0
1 0 0
1 1 1
1 0 0
1 0 0

 , C
(f)
MR×P =


1 1 1
1 1 1
1 0 0
1 1 1
1 1 1
1 0 0

 , C
(f)
MR×P =


1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

 ,
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Figure 2: KALS receivers: Impact of the design parameters and the modulation on the BER.

Fig. 3 depicts the BER per data stream versus SNR, with the system
parameters K=M=J=2, R=P=F=3, N=10. For the three configurations,
the three data streams are sent using the three subcarriers, which ensures a full
frequency diversity. Case 3 corresponds to a full allocation, meaning that all
the data streams are sent by all the transmit antennas, during the three time
blocks. In Case 1 (Case 2), only the first (first two, respectively) data stream(s)
is (are) transmitted by both antennas, during the three time blocks. These three
choices of the allocation tensor illustrate three different levels of redundancy in
the space domain, with full spreading in the time and frequency domains. More
generally, the allocation tensor can be used to exploit different levels of space,
time and/or frequency diversities.

As expected, in Case 3, the BERs of the three data streams are very close
since all three benefit from full allocation. In Case 1, the first data stream which
is fully spread (in space, time, and frequency), has the smallest BER, the BERs
of the other two data streams being nearly the same. In Case 2, the first two
data streams have the best performance, with very close BERs, because they
benefit from full space-time-frequency diversities, the third data stream being
partially spread in space due to its transmission with both antennas, only during
the first time block.

6.4. TSTF-KPLS/SKALS/KALS receivers: Impact of the pilot sequence length

In this section, we illustrate the impact of the pilot sequence length (Np ∈
{1, 2, 3}) on the BER and channel NMSE obtained with the supervised SKALS
and KPLS receivers, in the case of full allocation, with M=R=F=J=2, K=P=4
and N=10. A comparison is also made with the semi-blind KALS receiver. From
Fig. 4, one can conclude that the SKALS and KPLS receivers provide very close
BERs, and a BER improvement with respect to the KALS receiver. This BER
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Figure 3: TSTF-ZF receiver: Impact of data stream allocations.

improvement saturates from Np=2, with a SNR gap of about 3dB for a BER
of 10−3. In terms of channel NMSE, the best performance is obtained with the
SKALS algorithm due to its iterative nature, contrarily to KPLS. Note that an
increase of Np beyond 2 allows to improve the channel estimation with KPLS,
which is much less pronounced with SKALS. However, the channel estimation
with KPLS remains worse than with KALS and SKALS.
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Figure 4: TSTF-KPLS/SKALS/KALS receivers: Impact of pilot length.

25



6.5. Comparison of the Kronecker receivers for TSTF

We compare four Kronecker receivers (KALS, SKALS, KALMS, KSVD) of
the TSTF system, in terms of BER, channel NMSE versus SNR (Fig. 5), and
reconstruction NMSE versus iterations number (Fig. 6). For this last figure,
the SNR was set to 20dB, and the maximum number of iterations was fixed to
80 for the semi-blind receivers. The parameters are M=R=F=J=2, K=P=4
and N=10. For KALMS, the step sizes γS=0.5 and γH=2 were determined from
experiments, so as to obtain a good performance-convergence speed trade-off.
From the simulation results, one can draw the following conclusions:

• The supervised SKALS receiver allows to improve significantly the BER
and channel NMSE in comparison with the semi-blind receivers.

• The KALS and KSVD receivers provide very close performances in terms
of BER, channel NMSE, and reconstruction NMSE, requiring only three
iterations for convergence, with nearly the same computational cost.
Moreover, we can note the remarkable performance of these semi-blind
receivers which allow to nullify the BER for a SNR greater than 10dB.

• The KALMS receiver is the least successful among the three semi-blind
receivers, in terms of BER, of channel estimation, and particularly of
convergence speed. Due to a much greater average number of iterations
for convergence (around Nit=60 instead of Nit=3 for KALS and KSVD),
the KALMS receiver has the highest computational cost.

In summary, one can conclude that the KALS and KSVD receivers provide
the best performance-computational cost trade-off among the three semi-blind
receivers which use the knowledge of only one symbol. A short pilot sequence
exploited by the SKALS receiver allows to improve notably the performance.

7. Conclusion

In the first part of the paper, we have presented five methods for solving the
Kronecker product approximation problem: KALS, SKALS, KPLS, KSVD, and
KALMS, the first two ones being new. In the second part, eight tensor-based
MIMO communication systems have been presented in a unified way, using a
generalized PARATUCK model. This presentation has allowed to highlight
the evolution of MIMO system design since the pioneering work [17], with the
introduction of coding and resource allocation tensors, and an extension to
OFDM and CDMA-OFDM systems. A comparative theoretical performance
analysis has been carried out, establishing the maximal diversity gain for all
considered systems, as a function of the design parameters (K,M,F, P, J),
and the allocation matrices/tensors. This study clearly shows the benefits of
tensor codings, the more recently proposed TSTF system providing the highest
maximal diversity gain, as corroborated by computer simulations. Exploiting
the algorithms presented in the first part, five Kronecker receivers have been
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Figure 5: TSTF-Kronecker receivers: Performance comparison.
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Figure 6: TSTF-Kronecker receivers: Convergence speed comparison.

proposed using Kronecker products between symbol and channel matrices.
This new formulation of receivers shows that the systems differentiate by the
matrix to be pseudo-inverted for computing the LS estimate of the Kronecker
product. This matrix depends both on coding and allocation matrices/tensors.
Necessary conditions have been derived for joint channel/symbols estimation,
showing that TSTF and TST provide more flexibility than STF and ST. Based
on computer simulations, we have compared the performance of TSTF, STF,
and TST, with the purpose of illustrating the diversity gain of each system.
Finally, the five proposed Kronecker receivers have been compared for the
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TSTF system, in terms of BER, channel and reconstruction NMSEs, speed
of convergence, and computational cost, showing that the KALS and KSVD
receivers provide the best trade-off between computational cost and quality of
symbol and channel estimation. The role played by the allocation tensor has
also been illustrated.

Perspectives of this work include the optimization of the coding tensor,
and extensions of recently developed tensor-based relay systems [32]-[33] by
incorporating, at the source and relay nodes, coding and allocation tensors,
with Kronecker receivers as proposed in this paper. Allocation tensors can be
useful for affecting different levels of coding redundancy at each data stream, or
for allocating a subchannel, i.e. an OFDM subcarrier, to each user of a multiuser
orthogonal frequency-division multiple access (OFDMA) system. It should be
interesting to combine such allocations with a resource allocation optimization
[34], [35]. Finally, the multiuser case, with multipath propagation for each user,
constitutes also an interesting perspective of this work.
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