
HAL Id: hal-01679137
https://hal.science/hal-01679137v1

Submitted on 9 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CommandBoard: Creating a General-Purpose
Command Gesture Input Space for Soft Keyboards

Jessalyn Alvina, Carla F Griggio, Xiaojun Bi, Wendy E. Mackay

To cite this version:
Jessalyn Alvina, Carla F Griggio, Xiaojun Bi, Wendy E. Mackay. CommandBoard: Creating a
General-Purpose Command Gesture Input Space for Soft Keyboards. UIST ’17 Proceedings of the
30th Annual ACM Symposium on User Interface Software and Technology, Oct 2017, Quebec City,
Canada. pp.17-28, �10.1145/3126594.3126639�. �hal-01679137�

https://hal.science/hal-01679137v1
https://hal.archives-ouvertes.fr

CommandBoard: Creating a General-Purpose
Command Gesture Input Space for Soft Keyboards

Jessalyn Alvina1 Carla F. Griggio1 Xiaojun Bi2 Wendy E. Mackay1

1LRI, Univ. Paris-Sud, CNRS
Inria, Université Paris-Saclay

F-91400 Orsay, France

2Department of Computer Science
Stony Brook University

Stony Brook, New York, USA
{alvina, griggio, mackay}@lri.fr; xiaojun@cs.stonybrook.edu

Figure 1. CommandBoard creates a new command gesture input space above a soft keyboard. Users can: a) type ‘happy’ and use a dynamic guide to
style it as bold; b) type ‘brightn’, draw an execute gesture and adjust the brightness slider; c) type ‘sans’, choose ‘sans mono’ and draw an execute
gesture to change the font; d) type ‘color’, select yellow in the marking menu to change the brush color.

ABSTRACT
CommandBoard offers a simple, efficient and incrementally
learnable technique for issuing gesture commands from a soft
keyboard. We transform the area above the keyboard into a
command-gesture input space that lets users draw unique com-
mand gestures or type command names followed by execute.
Novices who pause see an in-context dynamic guide, whereas
experts simply draw. Our studies show that CommandBoard’s
inline gesture shortcuts are significantly faster (almost dou-
ble) than markdown symbols and significantly preferred by
users. We demonstrate additional techniques for more com-
plex commands, and discuss trade-offs with respect to the
user’s knowledge and motor skills, as well as the size and
structure of the command space.

This is the author version of this article.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UIST 2017, October 22–25, 2017, Quebec City, QC, Canada

© 2017 ACM. ISBN 978-1-4503-4981-9/17/10. . . $15.00

DOI: https://doi.org/10.1145/3126594.3126639

ACM Classification Keywords
H.5.2. Information Interfaces, e.g. (HCI): User Interfaces

Author Keywords
Gesture Shortcuts; Gesture Typing; Mobile; Soft keyboards.

INTRODUCTION
Today’s mobile devices offer a variety of functionality with
the emphasis on communication, games, and information con-
sumption. Text entry comprises about 40% of mobile activ-
ity [4], and is usually accomplished with a soft keyboard. Orig-
inally designed to imitate physical keyboards, soft keyboards
consist of a set of keys that can be tapped to input text. Gesture
keyboards [24] offer a significantly faster alternative by letting
users draw through each successive letter of the word. The
resulting gesture is interpreted by a sophisticated recognition
algorithm, which, when combined with the relevant dictionary,
suggests the mostly likely word completions.

Although very effective for producing text, these keyboards
are not designed to issue commands. Instead, mobile devices
rely on buttons, menus and dialog boxes, which restricts the
available command set to what fits on a tiny screen. These

https://doi.org/10.1145/3126594.3126639

recognition-based command techniques are easy to learn, but
rarely offer a path toward recall-based expert use, even though
many users regularly spend hours interacting with their mobile
devices. An exception is a markdown language, which styles
text by surrounding it with special symbols, such as _hello_
to italicize hello. This approach is efficient on a physical
keyboard, since it avoids leaving the keyboard to move the
mouse, but requires two keyboard swaps on a soft keyboard.
Worse, users have no easy way to learn the symbol mappings.

CommandBoard
Our goal is to offer users a simple, yet powerful method of
issuing commands from a mobile device. We introduce Com-
mandBoard, which transforms a soft keyboard into an efficient,
yet learnable command-entry tool. We build on a key insight
from the gesture keyboard, i.e. that the system can recognize
users’ gestures as they cross over the keys, and interpret them
as text. CommandBoard generalizes this idea by creating an
additional space, above the keyboard, for interpreting free-
form gestures. We can think of this as extending a transparent
interaction layer above the keyboard, where users can still
see the usual display, but also issue gesture commands. This
creates a general-purpose gesture command input space that
supports a variety of command entry techniques.

CommandBoard takes full advantage of the limited screen
real estate on a smartphone. Figure 2 shows four discrete
interaction spaces. As with gesture keyboard, the lower space
is dedicated to generating text input or emoticons via tapping,
crossing or dwelling on keys. Users can also swap keyboards,
e.g. numeric or emoticon. CommandBoard includes additional
features (marked in green), which let users specify command
names for later execution via a gesture.

Figure 2. CommandBoard specifies multiple command entry spaces.
New methods (in green) include typing a command name followed by
an EXECUTE gesture; crossing a suggested command in the command
bar; or executing a unique gesture in the upper command gesture input
space. An in-context dynamic guide shows gesture-command mappings.

The gesture keyboard provides an optional suggestion bar
in the middle where users tap to choose among suggested
words. CommandBoard offers a similar command bar that
users cross to choose among suggested commands. Finally,
CommandBoard transforms the upper display area at the top
of the screen into a command-gesture input space where users
can draw an execute gesture to issue the current command
name, or draw a unique command gesture. Since this overlay

is transparent, users can see the underlying display, such as
the current chat conversation.

Our goal is to transform a universal text-entry device – a
soft keyboard – into a universal command generation device.
We first describe related work on discrete and gesture-based
command selection. We then describe the design and imple-
mentation of the CommandBoard, which comprises a set of
techniques for issuing commands from a gesture keyboard. We
then present the results of an experiment that compares expert-
level performance with inline gesture shortcuts to markdown
symbols, and a qualitative study to assess user preferences. We
demonstrate additional techniques, based on this idea, and
conclude with directions for future research.

RELATED WORK
Selecting Commands via Discrete Actions
Graphical user interfaces usually offer menus and toolbars to
execute commands. This allows non-expert users to quickly
learn which commands are available, but makes large or com-
plex command sets difficult to access. Small menus and tool
bars allow users to quickly access common items, but do not
help with large command sets, which may require extensive
search and multiple physical operations to find the desired
item [20]. Accessing a multi-level hierarchical menu forces
the user to move through a multi-step process of selecting the
appropriate category before finding the desired leaf.

Keyboard shortcuts let users select commands via a sequence
of key presses. Although very efficient for experts, the process
of transitioning from novice to expert can be very slow [14].
In fact, research from engineering psychology shows that the
most commonly forgotten cognitive skill is performing multi-
step action sequences [23].

Selecting Commands via Gestures
In contrast to performing a sequence of discrete actions, draw-
ing a gesture is a perceptual motor skill that involves a con-
tinuous response, with little memory loss over long periods
of time [23]. Researchers have explored leveraging contin-
uous gestures to select commands. A classic example is a
Marking Menu [12], which supports executing commands via
directional strokes. FlowMenu [8] extends the hierarchical
marking menu to include parameter adjustment of an item. For
example, a user can select a zoom command and specify the
zoom value in the sub-menu, or even type the value (when the
desired number does not exist) without lifting the pen. Li’s
[15] world-wide deployment of a gesture-search system for
smartphones demonstrated that users can successfully access
their data via gestures, in their day-to-day mobile activities.

Appert & Zhai [2] investigated using gestures as an alternative
to keyboard shortcuts. They found that gesture shortcuts are
easier to learn and recall thanks to their spatial and iconic prop-
erties. OctoPocus [3] offers better support for learning gesture
shortcuts, acting as a dynamic guide to help users follow the
correct gesture template: If the user hesitates, OctoPocus
appears, showing the remaining possible ways to finish the
gesture. This highlights the need for progressive feedforward
and feedback to support incremental learning, to help novices
transition to expert users.

Augmenting Soft Keyboards
In response to the large demand for text entry on mobile
phones, phone manufacturers are developing keyboard exten-
sions that offer new capabilities, from suggesting emoticons to
general search. The latest version of Google Keyboard (now
called Gboard) 1 includes an in-context search engine. Users
tap a button on the top-left of the keyboard to access the search
engine, where they can directly type the search keyword, see
the results, and share it. The TapBoard 2 [9] enables pointing
via a soft keyboard, adding support to bimanual interaction.
Arpege [7] supports multi-finger chord interaction, with dy-
namic guides to show novices where to place their fingers.

Previous research also explored ways of supporting expressiv-
ity with soft keyboards: KeyStrokes [19] visualizes the unique
typing style of the user on a colorful canvas; Buschek et al. [5]
render the user’s typing variations into dynamic handwritten-
looking output; and Expressive Keyboards [1] “recycle” users’
gesture-typing variations to generate and control rich, expres-
sive output.

As in any multitasking environment, switching between typ-
ing and issuing commands incurs interruption costs [22]. To
reduce these costs, researchers have explored augmenting the
keyboard with gesture-based commands. For example, Fuc-
cella et al. [6] propose using a two-finger touch gesture directly
on top of a soft keyboard which lets the user move the caret and
thus select a specified text. Command Strokes [11] employ ad-
ditional buttons, e.g. COMMAND to enable keyboard shortcuts
on gesture keyboards [10, 24]. Users can simulate using con-
trol keys on a physical keyboard, e.g. drawing a gesture that
passes through COMMAND then C to perform COMMAND+C.
CommandBoard moves one step further by turning the space
above the keyboard into a general-purpose command gesture
space, to support more sophisticated command generation.

COMMANDBOARD TECHNIQUES
We are interested in extending the interaction capabilities of
gesture keyboards. By taking advantage of the otherwise-
unused input space above the keyboard, CommandBoard sig-
nificantly increases the keyboard’s power, letting users execute
commands from the current command set, even if they are not
visible on the screen.

Note that we do not seek to define a single ‘best’ method of
issuing commands, since different commands perform bet-
ter in different contexts [16], but rather to create a keyboard
that offers users a choice, based on their cognitive and motor
skills, as well as the size and organization of the current com-
mand set. CommandBoard exists in harmony with existing
command-generation techniques, such as menus and buttons,
but also offers novices the opportunity to transition into power
users, to execute commands fluidly at their fingertips. Before
describing the CommandBoard concept, we first describe the
properties of gesture keyboards. We then show how Com-
mandBoard leverages these to provide users with a variety of
simple, yet powerful command invocation techniques.

1https://play.google.com/store/apps/details?id=com.google.
android.inputmethod.latin&hl=en

Gesture Keyboards
Gesture keyboards let users either tap each letter to enter text
or gesture-type by drawing a line that connects all the letters
(a word-gesture). Word-gesture recognition requires a multi-
channel recognition engine [10], where the drawn shape is
first compared to an "ideal" shape, i.e. from middle-point
to middle-point of each key. The recognition engine then
produces a list of word candidates. This list is shortened
based on the actual location of the drawn word-gesture on the
keyboard and weighted based on the language information.
The recognition engine also considers temporal features: If the
user slows down at a letter, the recognizer weights the word
candidate higher.

This recognition process is conducted progressively as the
user moves her finger: at each touch, the gesture keyboard
generates a list of at least four suggested words. The first is
treated as the final result, the next three are displayed in the
suggestion bar. The gesture keyboard may also auto-complete
the current word-gesture, even before the user reaches the last
letter of the intended word.

If a word-gesture is drawn outside the keyboard space, the ges-
ture keyboard captures the touch event but stops recognizing
the word. When the user’s finger is released, the word output
is cancelled and not rendered. By contrast, CommandBoard
interprets a wide variety of gestures drawn above the keyboard.
The next sections describe the two most basic techniques:
type-and-execute and inline gesture shortcuts.

Type-and-Execute Commands
Although novices may need to search through menus to dis-
cover the available commands, frequent users are usually fa-
miliar with both the commands and their names. Navigating
through menus can be time-consuming, especially if the user
forgets where the desired command is classified within a hier-
archical menu. Some graphical user interfaces offer a search
bar where typing the keyword or command name displays its
location in a pull-down menu, if the command exists. Clicking
on the search result issues the command, as if it had been
selected from the menu. CommandBoard offers a similar func-
tion by letting the user type any command name from the
keyboard, and then execute it directly by drawing the execute
gesture in the display area above the keyboard.

Keyword Search Since CommandBoard co-exists with tradi-
tional menus, we have prior knowledge about the current set
of command names or command-gesture input space. When a
user gesture-types a word, CommandBoard’s type-and-execute
technique examines the first four words suggested by the key-
board recognition engine to see if any is a keyword in the
command space. The type-and-execute technique treats each
element of a compound command name as a search keyword.
For example, both “line” and “spacing” can be used to find
LINE SPACING. Users need only type the first unique letters
of a long command name and the system will suggest the
full command. For example, typing ’brightn’ produces the
BRIGHTNESS command in the command bar, which can then
be invoked by performing the execute (/\) gesture (Figure 1b).

https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin&hl=en
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin&hl=en

Command Preview If the keyword search is successful, the
type-and-execute technique displays a preview: the full com-
mand name appears at the top of the screen. The keyboard
continues to recognize the word-gesture as the user types.
Thus, when the preview appears, the type-and-execute tech-
nique stores the keyword so that even if the recognized word
changes as the user slides her finger upward, the command key-
word remains the same. If the user continues gesture-typing,
the preview disappears. If the user releases her finger within
the keyboard space, the word appears as normal text.

Command Execution If, after typing a recognized command
name, the user continues to slide her finger upward, she en-
ables the command-gesture input space. If she now performs
a /\ gesture, the type-and-execute technique will execute the
corresponding command. This allows the user to perform any
command directly from the keyboard, as long as she already
knows the command name. She need not learn any special
commands beyond the execute gesture.

We designed the execute gesture specifically so that it would
not interfere with the GBoard’s technique for cancelling ges-
tures. (The user cancels the current word by sliding her finger
into the space above the keyboard and releasing it.) By con-
trast, CommandBoard’s execute gesture is designed to move
up and then down, explicitly change direction, to reduce the
risk of issuing unintended commands. The following examples
illustrate various applications of CommandBoard’s type-and-
execute technique:

Text Editor Application
Most text editing applications for mobile devices, such as
Google Docs, offer only a limited number of commands. The
process is also cumbersome: Selecting a menu command
requires hiding the keyboard, navigating to and executing
the command, then closing the menu and bringing back the
keyboard, all before continuing to type.

The type-and-execute technique simplifies command selection
for text editors. The user can type the name of any menu item,
as if it were a search word, and then execute it directly. For
example, Figure 1c shows the user typing the word ‘sans’, then
sliding her finger above the keyboard to perform the execute
gesture, at which point type-and-execute applies the SANS
MONO font to the selected text.

CommandBoard’s type-and-execute technique also lets users
type sub-menu names, and display their items in the command
bar located above the suggestion bar. This is particularly useful
when the menu item cannot be typed, for example the numbers
shown in Figure 3. The user types ‘line’ and a preview for
the LINE SPACING sub-menu appears (Figure 3a). The menu
items then appear on the command bar. She sets the LINE
SPACING value to 1.2 by crossing through it in the command
bar and then performing the execute gesture (Figure 3c).

Doodle Application
Many mobile applications, such as iMessage and SnapChat,
let users ‘doodle’ on their messages. CommandBoard’s type-
and-execute technique lets users specify brush properties, such
as changing the color or brush type, with a marking menu [13].
For example, in Figure 1d, the user types ‘color’. She slides

Figure 3. Typing an existing command name a) displays a preview. Here,
LINE SPACING is a sub-menu, so its menu items appear in the command
bar. After sliding across the command bar, b) performing a | gesture
cancels the current word, whereas c) performing a /\ gesture executes
the command.

her finger upward to reveal the COLOR marking menu, which
brings up various brush color, and then moves down-left to
select YELLOW.

Note that a challenge in combining CommandBoard with a
marking menu is deciding when a gesture should be interpreted
as a ‘mark’. One solution is to require users to begin from
the middle of the screen, which, given the phone’s limited
screen real estate, would ensure sufficient space to move in all
directions.

Parameterization
CommandBoard’s type-and-execute technique can also be com-
bined with sliders to parameterize commands. For example,
in Figure 1b, the user begins gesture-typing the ‘brightness’
command. Upon performing the /\ gesture, a slider appears,
with the handle under her finger. Moving along the x-axis (left
and right) adjusts the screen’s brightness, whereas moving
along the y-axis (up and down) moves the slider’s position on
the screen.

Inline Gesture Shortcuts
CommandBoard’s inline gesture shortcuts let users invoke
gesture shortcuts from the keyboard as they type. Instead of
typing the command name, the user types the object of the
command, for example, the text to be styled. The user then
slides her finger above the keyboard, pausing to bring up the
dynamic guide that shows the current set of possible com-
mands (see Figure 1a). Users can benefit from motor memory
to recall these gestures. As they become experts, they can
perform the command gesture directly, without pausing for the
guide. The following examples illustrate various applications
of CommandBoard’s inline gesture shortcuts technique:

Chat Application
Although soft keyboards are not specifically designed to sup-
port command input, users often use markdown languages to
issue text styling commands. For example, typing an asterisk
before and after a word (*help!*) produces (help!). Mark-
down commands are effective keyboard shortcuts when using
physical keyboards, because users avoid lifting their hands
to move the mouse. On soft keyboards, however, markdown
languages force users to switch from the alphabetic to the
symbolic keyboard, disrupting their writing flow.

Unfortunately, issuing styling commands as text can be cum-
bersome, especially if done often or multiple times in a row.
CommandBoard’s inline gesture shortcuts offer a more effi-
cient alternative, by executing a specialized gesture directly
from the keyboard. In Figure 1a, the user wants to style the
word ‘happy’. After writing it, she moves into the upper area,
pauses to see several styling alternatives, and then follows the
pigtail to execute the bold command. As before, the dynamic
guide offers a path to help users develop their motor memory,
becoming expert over time.

CommandBoard’s markdown language is designed to be sim-
ilar to those in existing applications, where the user writes
a symbol before and after the word. Thus, writing ‘happy’
followed by a pigtail gesture generates ‘*happy*’ on the text
field buffer, which then will be rendered as happy. This en-
ables users to style more than one word, by moving the caret
in between the markdown symbols and insert more words.

Contacts Application
Most phones have a CONTACTS application that lets users tap
on a contact to view the person’s details and then call, send
an SMS, or use another communication app to communicate
with that person. Users can also access a person’s details by
typing her name in the search bar.

CommandBoard’s inline gesture shortcuts let users issue com-
mands from within the search bar, as soon as the desired result
appears. For example, if ‘Mom’ exists in the contacts list, the
user can gesture-type ‘Mom’, then slide up to the upper space
and draw a pigtail gesture to call her. If the search produces
multiple contacts the command bar displays the alternatives.
For example, Figure 2 shows two contacts: Alice Brooke and
Alice Waltz. Here, the user crosses through the Alice Brooke
contact and then draws a pigtail gesture to call her.

Note that both type-and-execute and inline gesture shortcuts
are designed for efficiency, and rely on an experienced user’s
ability to either recall the command name, or the associated
gesture. Each technique provides scaffolding to help novice
users learn, including the type-and-execute’s command bar and
the inline gesture shortcuts’s dynamic guides. However, these
techniques can only display a small number of commands,
which makes them most useful when the current context sig-
nificantly limits the command space.

EVALUATION
Standard mobile devices use icons, buttons and menus to ac-
cess functionality, because these are easy for novice users to
recognize and use. However, many experts prefer the effi-
ciency of command-line interfaces, even though they require
learning and subsequent recall of command names and syntax.
One of the goals of CommandBoard is to bridge the gap be-
tween these two approaches, by supporting both recognition-
and recall-based interaction, with a smooth transition between
novice and expert use.

We begin by examining “expert” behavior, with a focus on
the efficiency of the technique. We use a common experi-
mental strategy for simulating expert performance: we show
the participant the correct action so that we measure only
performance, not confounded by unmeasured memory issues.

We sought an ecologically valid domain for testing Command-
Board’s ability to support both recognition and recall. We
chose the markdown commands available in chat applications
such as WhatsApp and Slack, since users can style their text
by typing markdown symbols before and after the text (recall),
with a “cheatsheet” in the menu if they forget the symbols
(recognition). For evaluating expert behavior, markdown
symbols offer a fairer, more realistic comparison than standard
pull-down menus, which would be even slower. In the inline
gesture shortcuts condition, users write a word and then
draw a command gesture directly from the keyboard to style
it, whereas in the markdown symbols condition, users type
markdown symbols before and after the word to be styled.
Although not a primary goal, we are also interested in whether
or not users begin to learn gesture-command mappings,
simply by using the technique. Our research questions include:

1. Are inline gesture shortcuts faster and more accurate than
text-based markdown symbols?

2. Do users prefer CommandBoard’s inline gesture shortcuts?

METHOD
We conducted a two-part study, using a within-participants
design, to compare CommandBoard’s inline gesture shortcuts
technique to markdown symbols (see Figure 5). Part A is a one-
factor experiment that compares speed and accuracy of expert
users using these two techniques. Part B is a qualitative study
designed to assess participants’ preferences as well as inciden-
tal learning with respect to each technique. Part B follows Part
A, with the same participants, hardware and software.

Participants
We recruited 12 right handed participants (4 women, 8 men),
aged 23-41. All use mobile phones daily. Two gesture-type
daily; the others are non-users. Three sometimes use mark-
down symbols in existing chat applications; the rest do not.

Hardware and Software
We used two LG Nexus 5X (5.2" display) smartphones, run-
ning Android 7.1.

We implemented CommandBoard as an Android application
that lets users issue text-styling commands with inline ges-
ture shortcuts, using the native Android gesture recognizer.
The inline gesture shortcuts technique requires the user to
draw through the letters of the indicated word on the keyboard.
CommandBoard recognizes the word, and renders it on the
screen. If the user continues the stroke above the keyboard, a
semi-transparent overlay appears and the stroke is interpreted
as a command gesture. The overlay displays an OctoPocus-
like [3] dynamic guide indicating the gestures associated with
possible styling commands. Lifting the finger applies the rec-
ognized gesture-command to the word output and the overlay
disappears. Note: We removed OctoPocus’ dwell delay in
the experiment to avoid confounding time measures. We also
implemented the markdown symbols technique, which requires
the user to type a specified symbol before and after the word
to be styled.

Command-Set Design: We created a command set consisting
of six text-styling commands: underline, monospace, big,

small, outline, and gradient color and mapped them to inline
gesture shortcuts and markdown symbols. The inline gesture
shortcuts set consists of six gestures chosen from [2] (see
Figure 4). We ensured that these gestures do not overlap when
displayed together in an OctoPocus-style dynamic guide using
[17]. The markdown symbols set consists of six characters
chosen from the second row of the symbol keyboard: @, #, $,
%, &, and +. We ensured that none overlap with existing chat
symbols from, e.g., WhatsApp and Slack. Mappings between
gestures and markdown symbols are counter-balanced across
participants using a Latin square.

Figure 4. Gesture set: Grey circles indicate where to begin drawing.

Phrase Set Design: We constructed two sets of 24 three-
word phrases drawn from the Oxford Dictionary2. The middle
words are each four-five letters long, and end in 24 different
letters of the alphabet (we exclude ‘j’ and ‘q’), to ensure ges-
ture starting points are distributed evenly across the keyboard.
We also balanced angles between stroke segments across the
sets, to avoid unwanted performance effects [21, 1]. Eight
words include acute angles, e.g. "menu"; eight include at least
one obtuse angle, e.g. the ‘agi’ in "magic"; and eight include
only 0○ or 180○ angles, e.g. "power".

We used the 24 middle words to create two sets of 24 three-
word phrases. We created two phrases around each middle
word, using three-to-six letter surrounding words that make
sense when read together as a phrase. For example, the first set
includes ‘play video games’, and the second set includes ‘some
video clips’. We distributed the first set of 24 phrases across
the practice and experimental conditions of the experiment,
and distributed the second set across the pre- and post-test
conditions of the study. We counter-balanced for order within
and across participants using a Latin square.

Procedure
Figure 5 shows the study design. Part A consists of four
conditions, each comprised of two blocks of six trials, grouped
by technique. Part B consists of a single recomposition task
where users can freely choose the desired technique.

Figure 5. Part A (Experiment): Each condition (Practice, Experiment,
Pre-test, and Post-test) includes two blocks of six trials, one per tech-
nique, with three replications in the experimental condition. Part B
(Study): Participants recompose 12 of their own messages, with free
choice of technique.

Part A: Trial Description
Each trial begins by displaying a three-word phrase, with a
styled middle word, e.g. play video games. The participant
2https://en.oxforddictionaries.com/

Figure 6. Each trial presents instructions above the line, and the result
below the line. Practice and Experimental conditions present a) inline
gesture shortcuts to draw, or b) markdown symbols to type, to issue the
specified styling command. Pre- and Post-Test conditions present c) the
styled text to reproduce with the specified technique, with no feedback.

presses START, then retypes the phrase, using the indicated
technique to style the middle word. This simulates the process
of issuing styling commands during the flow of writing. To
simulate “expert” behavior, each trial includes explicit instruc-
tions as to how to execute the command, removing the need
for recall memory. Participants may preview styling results.

Practice and experimental trials display the correct styling
command, either the gesture to draw (Figure 6a, inline gesture
shortcuts condition) or the symbols to type (Figure 6b, mark-
down symbols condition). This simulates expert performance
by eliminating errors due to forgetting a gesture shape or mark-
down symbol. Conditions are separated by short breaks.

Practice Condition
Participants are exposed to two practice blocks, one per tech-
nique (inline gesture shortcuts and markdown symbols). Each
block involves typing six three-word phrases, and styling the
middle word. Each trial shows which inline gesture shortcuts
or markdown symbols to use. In the inline gesture shortcuts con-
dition, the gesture template appears as soon as the participant’s
finger leaves the keyboard. Participants can retype phrases
as often as they like, until they are comfortable performing
the task quickly and reliably. An error message appears if
they forget to apply the style or make a typing or styling error.
Pressing CLEAN restarts the trial; DONE moves to the next
trial.

Experimental Condition Participants are exposed to two six-
trial blocks, one per technique (inline gesture shortcuts and
markdown symbols), for a total of 12 trials. Experimental trials
are identical to practice trials, except that participants retype
and style each three-word phrase three times (three replica-
tions), to provide a stable performance measure.

Pre- and Post-test Conditions Participants begin with two
blocks of six trials, one for each technique (inline gesture
shortcuts and markdown symbols), counter-balanced for order
within and across participants. Each trial displays the phrase to
be typed including the styled the middle word (see Figure 6c).
Participants reproduce the styled phrase with each technique,
with no feedback. This serves as a baseline measure of styling
command recall.

The pre- and post-test conditions are identical, but use phrases
from the alternate phrase set. The pre-test offers an initial
assessment of learning, how much they remember immediately
after their first exposure to each technique. The post-test offers
a second assessment, based on more extensive practice during
the recomposition task.

Part B: Recomposition Task
After completing the Pre-Test condition in Part A, participants
are asked to perform a more open-ended set of tasks, in order
to assess their overall preferences for each technique. For
greater ecological validity, we asked participants to check
their smart phones and choose 12 recent messages to retype,
avoiding ones they felt were too personal. Participants were
free to change the text as they liked. We then asked them to
recompose these 12 messages, using either technique to style
at least one word. We provided a ‘cheat sheet’ with the relevant
markdown symbols for the markdown symbols technique, and
displayed a dynamic guide with the relevant gestures for the
inline gesture shortcuts technique.

Measures
Input Time We measure INPUT TIME in seconds for the phrase
and each word-output, refered to as: WO1, WO2, and WO3.
Note that WO2 includes inserting the two markdown symbols.
This measure allows us to assess the gesture-typing time for
both inline gesture shortcuts and markdown symbols.

Gesture-Typing and Command Selection Time The partici-
pant must gesture-type the middle word and style it using
inline gesture shortcuts or markdown symbols (i.e. WO2). We
capture the times spent in each sub-activity. We measure Com-
mand Selection Time (COMMAND TIME) and Gesture-Typing
Time (TYPING TIME).

inline gesture shortcuts: We measure the time spent leaving
the keyboard and drawing the gesture (COMMAND TIME). If a
participant crosses the top border of the keyboard, below the
suggestion bar, at eventk, then COMMAND TIME and TYPING TIME
are as follows:

COMMAND TIME = t(eventN)− t(eventk)
TYPING TIME = t(eventk)− t(event0)

markdown symbols: We measure the time spent writing the
symbols before and after the word (COMMAND TIME) for
WO2. Given an input I is a sequence of touch events, where
I = ⟨event(x,y,t,action)0...N⟩, if a participant starts gesture-
typing the word at eventi (tagged as down) and lifts her finger
at event j (tagged as up) in WO2, then COMMAND TIME and
TYPING TIME are as follows:

COMMAND TIME = t(eventi)− t(event0)+ t(eventN)− t(event j)

TYPING TIME = t(event j)− t(eventi)

Gap Time We assess how long participants spend switching
from writing a regular word (WO1) to a styled word (WO2)
and back again (WO3). Given that an input I is a sequence
of touch events, I = ⟨event(x,y,t,action)0...N⟩ where t is the
timestamp, we measure gap time between each word-output
as follows:

gap(WOi,WOi+1) = t(WOi+1.event0)− t(WOi.eventN)

Errors We count three types of error: typographical errors
(TYPING ERRORS), incorrect symbols or gestures (STYLING ER-
RORS), or forgetting to style the middle word (MISSING ER-
RORS). Note that TYPING ERRORS and STYLING ERRORS can

occur in the same trial. A trial is considered correct when it
has no errors.

Data Collection
We log all touch events and the recognized word output for
each trial. We tag each touch event with one of five actions:
shift, tap, down, move, and up. tap involves pressing a
key and shift involves holding down the keyboard shift key.
The remaining actions identify the start (down), drawing phase
(move) and completion (up) of a gesture. These measures
allow us to compute speed, movement time and errors for each
technique.

Participants answer a five-point Likert-style questionnaire to
assess their perceived accuracy, speed, ease-of-use, confidence,
comfort, and enjoyment of each technique. We also take
observational notes and debrief participants, with a particular
focus on what the participants liked and disliked about the
techniques and their strategies for styling their text.

RESULTS

Experiment
We collected a total of 432 experimental trials (12 participant
× 2 technique × 6 trials × 3 replications). We removed one
trial (P4) who gave up after repeated typing errors on the
third word of one phrase. After determining we had no un-
wanted significant effects from the word sets, we ran a one-way
repeated-measures analysis of variance for factor technique,
followed by Tukey HSD tests for post-hoc comparisons.

Input Time
The overall INPUT TIME (trial completion time) is significantly
affected by technique (F1,11 = 86.9, p < 0.0001). This is due
primarily to styling the middle word (WO2), as shown in
Figure 7.

Figure 7. Average time spent entering each word. WO2 is the styled
word. commands are significantly faster: almost double.

Gesture-Typing and Command Selection Time
On average, participants spent significantly more time styling
words with markdown symbols (mean 6.3s) than with inline
gesture shortcuts (3.3 seconds), with F1,11 = 71.1, p < 0.0001.
When we break apart INPUT TIME for WO2 into time to select
the command (COMMAND TIME) and time to gesture-type it
(TYPING TIME), we find that participants spend significantly

longer writing symbols (mean COMMAND TIME =5.8s) than
drawing gestures (mean COMMAND TIME =1.5s) [F1,11 = 177.6,
p < 0.0001] (Figure 8).

However, they spend more time gesture-typing the styled word
when using inline gesture shortcuts (mean TYPING TIME =1.8s)
than markdown symbols (mean TYPING TIME =0.6s) [F1,11 = 68.3,
p < 0.0001]. This may be an artifact of the experimental de-
sign, since participants slowed down to check that they had
gesture-typed the correct word, before drawing the styling
gesture. In the long run, this may actually benefit the inline
gesture shortcuts technique, because slowing down improves
the recognition process with gesture keyboards [10]. Recog-
nized words are less likely to change when users slide into the
command gesture input space.

Figure 8. Average time spent gesture-typing (TYPING TIME) and issuing
the command (COMMAND TIME). Participants drew quickly with inline
gesture shortcuts, but took significantly longer inserting markdown symbols.

Gap Time
When the participants switch from writing the first word to ap-
plying a styling command to the second word, the gap duration
(GAP (WO1,WO2)) is significantly longer for markdown sym-
bols (mean=1.9s) than for inline gesture shortcuts (mean=1.2s)
[F1,11 = 49.7, p < 0.0001]. This suggests that participants
needed more time to consider which key to press when se-
lecting markdown symbols, i.e. searching and pre-planning.
However, when participants finish applying the styling com-
mand to the middle word, they spend significantly less time
writing the third word when using markdown symbols (mean
GAP (WO2,WO3) 0.9s) than when using inline gesture short-
cuts (mean GAP (WO2,WO3) 1.5s) [F1,11 = 128.4, p < 0.0001].
In the markdown symbols condition, they can already see if they
have applied the correct command as they press the SPACE
bar, whereas with inline gesture shortcuts, they must check
again after releasing their finger. This would be improved by
displaying a progressive preview at the end of the dynamic
guide, but was not made available during the experiment.

Errors
Participants made significantly fewer styling errors with inline
gesture shortcuts (mean STYLING ERRORS = 0.09) than with
markdown symbols (mean STYLING ERRORS = 0.36), [F1,11 =
13.7, p = 0.0035]. However participants using inline gesture
shortcuts were somewhat more likely to forget to actually
style the word – inline gesture shortcuts (mean MISSING ER-
RORS = 0.3) versus markdown symbols (mean MISSING ERRORS

= 0.04), [F1,11 = 26.7, p = 0.0003]. This is probably an artifact
of the experimental setting, since in actual use, users would
not ‘forget’ to style a word if they wanted to. We did not
find a significant effect of technique on accuracy [F1,11 = 49.7,
p = 0.47]. which suggests that using gestures to style text does
not interfere with typing accuracy.

Preferences Study

Pre- and Post-test Results
We ran a one-way repeated measures analysis of variance for
factor technique to compare STYLING ERRORS during the Pre-
and Post-test conditions. We found a significant interaction
effect [F1,11 = 4.4, p = 0.0375] for STYLING ERRORS. In the Pre-
test, the average STYLING ERRORS for inline gesture shortcuts
and markdown symbols are 0.52 and 0.32, respectively. In the
Post-test, the average STYLING ERRORS for inline gesture short-
cuts and markdown symbols are 0.35 and 0.38, respectively.

Prior to the pre-test condition, participants had practiced both
techniques, but always with a direct indication of how to per-
form the gesture or what symbols to type. The pre-test was
the first time that participants had ever tried executing the
commands without help. Participants remembered half the
gestures and two thirds of the symbols from the previous prac-
tice and experiment condition. The post-test was given after
participants had experimented with their choice of technique to
recompose their own text, and participants remembered almost
two thirds of the gestures. This suggests that we should study
longer term use of CommandBoard’s inline gesture shortcuts
technique, to see how well it supports incremental learning
over time.

Recomposition Task Results
Although given a choice between using markdown symbols or
inline gesture shortcuts, all participants chose gestures. They
ignored the cheat-sheet showing all markdown symbols and
their resulting styles. P11 was the exception, but he only
looked at the cheat-sheet to get inspiration from the style ex-
amples. We observed three strategies when styling words with
gestures: thinking of a style first, and then using OctoPocus to
follow the corresponding gesture; activating OctoPocus first,
and then deciding on a style from the options; and performing
a learned gesture to apply a style with no hesitation.

A few participants explained the rationale behind their styling.
P2 recomposed a text message to his wife with a shopping list,
and he used all available styles to highlight the ingredients
they had to buy for a salad. P8 associated word categories
to styles: big meant positive or a lot, small meant negative
or uncertain, underline was important or certain, outline and
gradient were for special words. P12 also assigned meanings
to different styles: gradient for opinions, outline for time-
related words, underline for important words, and big for
emphasisis in general: “Big is the most useful.” P11 on the
other hand cared less about the different styling options, and
mostly focused on emphasizing important words: “I think I
didn’t really want to choose a specific [style], I just wanted to
add an effect on it so it looks different from other words.”

Self-reported Quantitative Measures
Participants were asked to rate six statements on a 5-point Lik-
ert scale, from strongly disagree (1) to strongly agree (5). The
statements asked whether the current technique helped them
to style text: a) accurately, b) quickly, c) easily, d) confidently,
e) comfortably, and f) enjoyably. Table 1 lists the medians
of each question for both techniques. An analysis using a
Friedman test showed that participants reported significantly
stronger agreement for inline gesture shortcuts compared to
markdown symbols on five statements: ACCURATELY (p = .34,
χ

2(1) = 4.5), QUICKLY (p = .007, χ
2(1) = 7.36), EASILY (p = .11,

χ
2(1) = 6.4), COMFORTABLY (p = .002, χ

2(1) = 10) and ENJOY-
ABLY (p = .001, χ

2(1) = 11).

Statement Symbols Gestures

ACCURATELY* 2.5 4.0
QUICKLY* 2.0 4.0
EASILY* 2.0 4.0
CONFIDENTLY 2.5 4.0
COMFORTABLY* 2.0 4.0
ENJOYABLY* 2.0 4.5

Table 1. Participant ratings of how each technique helped them to style
text (median values; * indicates a significant difference). Participants
significantly preferred gestures in all categories except ‘confidently’.

User Preferences and Debriefing
The final questionnaire asked participants to rate their pref-
erence between the two techniques on a 5-point scale (from
strong preference for markdown symbols to strong preference
for inline gesture shortcuts). All participants preferred ges-
tures: 10 indicated a strong preference, 2 indicated some
preference.

Six participants expressed their preference in terms of typing
flow, explaining that inline gesture shortcuts best supported
styling without interrupting their text composition process.
P2 commented “I didn’t use the symbols at all in the chat.
It’s troublesome to have to switch the keyboard, doing it in
the beginning and at the end. It really breaks the flow of the
writing. While with the gesture, it’s always there, I can pick
what I want on the go.” P9 wrote “It’s enjoyable to use and in
coherent with using gestures to type words.”

Participants differed with respect to recognition and recall.
Four participants found inline gesture shortcuts easier to recall
than markdown symbols: “I used big, small, underline in the
recomposition task, so I remember them” (P1). However, four
participants had difficulty recalling the inline gesture shortcuts
mappings: P9 said “the paths of gestures are difficult to link
with their meanings”, and P6 said “If the gestures are well
designed or designed by the user himself, it could be quite
natural.” Two participants felt more comfortable creating
mnemonics for markdown symbols rather than inline gesture
shortcuts, despite their overall preference for inline gesture
shortcuts: “It’s easier to remember the symbols for each type
(+ for big; $ for the underlined because of the line in the
S).” Three participants also appreciated the convenience of
recognizing gestures with OctoPocus rather always having to
recall them: “this is nice, I don’t have to remember and just
follow [the OctoPocus guideline].”

Finally, we asked participants to suggest other applications
for inline gesture shortcuts. Four participants suggested using
gestures to add emojis: “I have 5-10 smileys that I always use,
so I think it’d be nice if I can use the gesture to get it. Because
it’s bothersome having to change to another keyboard view
(emoticon), so if I can do it with the gesture it’d be cool.” (P3).
Two thought of command shortcuts: “If you like a webpage,
you could do a special gesture to bookmark it. To refresh
the page, you could use a circular gesture, etc.” (P2). Other
suggested applications were changing lines, replacing the enter
key, taking notes and changing fonts.

DISCUSSION
On mobile devices, users issue commands via buttons, menus
and dialog boxes and enter text with soft keyboards. Given
the sheer amount of time users spend with their smartphones
and other mobile devices, it seems odd that they willingly
accept such limited forms of interaction. CommandBoard
provides an additional set of interaction techniques, offering
users both power and simplicity when executing commands.
CommandBoard repurposes the unused output space above the
keyboard to accept gestures that invoke commands; extends
gesture keyboards with command gestures, without disrupting
existing command invocation techniques; and makes it easy
for users to discover gesture-command mappings.

We view CommandBoard as a strategy for transforming mobile
devices into powerful, personalized tools, with which users can
benefit from a variety of new command entry techniques, using
text, gestures or both. By building upon the gesture keyboard,
we leverage its powerful machine-learning algorithms, and
offer an easy way to incorporate successful gesture-based
command invocation techniques from the research literature.

CommandBoard offers a variety of alternatives, depending
upon the task, the user’s cognitive and motor skills, and the
size and structure of the current command space. Command-
Board can also handle parametric commands, such as typing
‘brightness’ followed by the execute gesture (/\) displays a
slider with continuous control of the screen brightness level.
It could also be combined with the Expressive Keyboard [1],
which would allow gestures to dynamically modify command
parameters.

Although we expected that CommandBoard would perform
better than current markdown commands, we were surprised
by the size of the effect (approximately twice as fast) and by
how much the participants preferred it over standard mark-
down commands. We believe this is because users can fluidly
style their text without interrupting the flow of their typing.
Users not only avoid switching modes, but also avoid selecting
text, the most time-consuming aspect of text editing [6].

One important issue is how best to support the transition from
novice to expert use. Expert users must not only know that a
command exists, but must also be able to recall either the com-
mand name, or the associated gesture shortcut. We provide
several types of dynamic guides to help novices learn, and
to help intermittent users when they forget. For example, we
present likely commands in the command bar, or show gesture

paths, either Marking Menu-style directions [12] or free-form
OctoPocus-style gestures [3].

The pre- and post-test results from the experiment indicate
that users can easily learn gesture commands simply through
the process of using them. We expected relatively low post-
test scores, since users had only limited experience with the
gestures during the practice and experimental conditions. Even
so, users clearly made fewer errors in the post-test, which
suggests that even limited experience can improve gesture
recall. We should be able to further reduce learning time and
enhance the transition from novice to expert performance by
letting users define their own memorable, yet recognizable
gestures [18], e.g. with [17]. In future work, we plan to
conduct a longitudinal field study of CommandBoard, in order
to more thoroughly investigate this transition from novice to
expert.

The experiment restricted CommandBoard’s inline gesture
shortcuts to styling one word at a time. For example, the
‘happy’+pigtail gesture generates happy. However, sometimes
users want to apply a style to multiple words. One option
would be to combine CommandBoard with other advanced
text selection techniques, such as selecting a phrase with a two-
finger gesture on top of the keyboard [6]. Gesture grammars
can also combine command gestures with selection-scope
gestures. For example, in type-and-execute, after sliding her
finger to the input space above the keyboard, the user could
specify the scope of the selection with a marking menu that
includes last word, last sentence, last paragraph, and select all.

All gesture-based menu systems, including Marking Menus
and OctoPocus, run into visual overload problems when forced
to display more than about 16 menu items at a time. This is
commonly addressed by creating hierarchical menus or by
restricting the command set to a more limited context. Com-
mandBoard faces these same limitations, but they can be par-
tially mitigated when CommandBoard is used in conjunction
with other recognition-based techniques. On the other hand,
using CommandBoard to type commands on the keyboard and
then select a parameter in the gesture-input space can help
users access the full range of available commands.

Ideally, mobile application developers should be able to use
CommandBoard as a service i.e. library when developing
an application. The gesture keyboard captures the gesture
input from the users and recognizes the word, which is then
processed by the underlying application. The developers de-
fine the command set from the current set of menu items,
the CommandBoard technique implementation, and the basic
gesture-command mappings in the underlying application.

CONCLUSION
We present CommandBoard, which lets users gesture-type
commands directly from a soft keyboard on a mobile device.
We transform the otherwise unused area above the keyboard
into an alternate, gesture-based input space. CommandBoard
is a general approach for adding gesture-based commands to a
soft keyboard, that builds upon gesture-typing to offer several
different techniques for generating commands.

This paper proposes two basic techniques that address different
trade-offs. The user can: 1. gesture-type a known command
name followed by an execute gesture; or 2. move from the
gesture-type keyboard directly to the command-gesture input
space above, to execute a unique command gesture.

When practiced by experts, both techniques require the user
to recall either the command name, or its associated gesture.
However, CommandBoard also provides a path from novice
to expert use, by offering two types of dynamic guides. The
command bar offers suggested command names that users can
select by crossing through, and the OctoPocus-style dynamic
guide offers progressive feedforward, to suggest alternative
command-gesture mappings.

We ran an experiment to compare CommandBoard’s command
invocation to a conventional markdown language for styling
text. We found that participants are not only significantly faster
with CommandBoard (almost double), but also participants
significantly preferred CommandBoard (unanimously).

We also demonstrate how we can leverage the gesture key-
board to extend its functionality while preserving its accuracy,
simplicity, and accessibility. We implemented several applica-
tions of each technique to illustrate the variety of ways that it
can be incorporated into different context. Finally, we show
how CommandBoard can be combined with traditional com-
mand selection techniques, including pull-down menus and
tool bars, as well as adopting more innovative gesture-based
menu techniques, such as Marking Menus and OctoPocus.

In future work, we plan a longitudinal study to see how easily
users learn CommandBoard over time and how they balance
the trade-offs it offers between recognition-based novice per-
formance, and recall-based expert performance. We also seek
new ways of helping users personalize their mobile devices,
by letting them define their own gestures and customize their
commands. Ultimately, we see CommandBoard as offering a
path towards simpler, yet significantly more powerful personal
devices.

ACKNOWLEDGMENTS
This work was supported by European Research Council
(ERC) grant n° 321135 CREATIV: Creating Co-Adaptive
Human-Computer Partnerships.

REFERENCES
1. Jessalyn Alvina, Joseph Malloch, and Wendy E. Mackay.

2016. Expressive Keyboards: Enriching Gesture-Typing
on Mobile Devices. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology
(UIST ’16). ACM, New York, NY, USA, 583–593. DOI:
http://dx.doi.org/10.1145/2984511.2984560

2. Caroline Appert and Shumin Zhai. 2009. Using Strokes
As Command Shortcuts: Cognitive Benefits and Toolkit
Support. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’09). ACM,
New York, NY, USA, 2289–2298. DOI:
http://dx.doi.org/10.1145/1518701.1519052

3. Olivier Bau and Wendy E. Mackay. 2008. OctoPocus: A
Dynamic Guide for Learning Gesture-based Command

http://dx.doi.org/10.1145/2984511.2984560
http://dx.doi.org/10.1145/1518701.1519052

Sets. In Proceedings of the 21st Annual ACM Symposium
on User Interface Software and Technology (UIST ’08).
ACM, New York, NY, USA, 37–46. DOI:
http://dx.doi.org/10.1145/1449715.1449724

4. Barry Brown, Moira McGregor, and Donald McMillan.
2014. 100 Days of iPhone Use: Understanding the
Details of Mobile Device Use. In Proceedings of the 16th
International Conference on Human-computer
Interaction with Mobile Devices & Services
(MobileHCI ’14). ACM, New York, NY, USA, 223–232.
DOI:http://dx.doi.org/10.1145/2628363.2628377

5. Daniel Buschek, Alexander De Luca, and Florian Alt.
2015. There is More to Typing Than Speed: Expressive
Mobile Touch Keyboards via Dynamic Font
Personalisation. In Proceedings of the 17th International
Conference on Human-Computer Interaction with Mobile
Devices and Services (MobileHCI ’15). ACM, New York,
NY, USA, 125–130. DOI:
http://dx.doi.org/10.1145/2785830.2785844

6. Vittorio Fuccella, Poika Isokoski, and Benoit Martin.
2013. Gestures and Widgets: Performance in Text Editing
on Multi-touch Capable Mobile Devices. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’13). ACM, New York, NY,
USA, 2785–2794. DOI:
http://dx.doi.org/10.1145/2470654.2481385

7. Emilien Ghomi, Stéphane Huot, Olivier Bau, Michel
Beaudouin-Lafon, and Wendy E. Mackay. 2013. ArpèGe:
Learning Multitouch Chord Gestures Vocabularies. In
Proceedings of the 2013 ACM International Conference
on Interactive Tabletops and Surfaces (ITS ’13). ACM,
New York, NY, USA, 209–218. DOI:
http://dx.doi.org/10.1145/2512349.2512795

8. François Guimbretiére and Terry Winograd. 2000.
FlowMenu: Combining Command, Text, and Data Entry.
In Proceedings of the 13th Annual ACM Symposium on
User Interface Software and Technology (UIST ’00).
ACM, New York, NY, USA, 213–216. DOI:
http://dx.doi.org/10.1145/354401.354778

9. Sunjun Kim and Geehyuk Lee. 2016. TapBoard 2: Simple
and Effective Touchpad-like Interaction on a Multi-Touch
Surface Keyboard. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 5163–5168. DOI:
http://dx.doi.org/10.1145/2858036.2858452

10. Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2:
A Large Vocabulary Shorthand Writing System for
Pen-based Computers. In Proceedings of the 17th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’04). ACM, New York, NY, USA,
43–52. DOI:http://dx.doi.org/10.1145/1029632.1029640

11. Per Ola Kristensson and Shumin Zhai. 2007. Command
Strokes with and Without Preview: Using Pen Gestures
on Keyboard for Command Selection. In Proceedings of
the SIGCHI Conference on Human Factors in Computing

Systems (CHI ’07). ACM, New York, NY, USA,
1137–1146. DOI:
http://dx.doi.org/10.1145/1240624.1240797

12. Gordon Kurtenbach and William Buxton. 1991. Issues in
Combining Marking and Direct Manipulation Techniques.
In Proceedings of the 4th Annual ACM Symposium on
User Interface Software and Technology (UIST ’91).
ACM, New York, NY, USA, 137–144. DOI:
http://dx.doi.org/10.1145/120782.120797

13. Gordon Kurtenbach and William Buxton. 1993. The
Limits of Expert Performance Using Hierarchic Marking
Menus. In Proceedings of the INTERACT ’93 and CHI

’93 Conference on Human Factors in Computing Systems
(CHI ’93). ACM, New York, NY, USA, 482–487. DOI:
http://dx.doi.org/10.1145/169059.169426

14. David M. Lane, H. Albert Napier, S. Camille Peres, and
Aniko Sandor. 2005. Hidden Costs of Graphical User
Interfaces: Failure to Make the Transition from Menus
and Icon Toolbars to Keyboard Shortcuts. Int. J. Hum.
Comput. Interaction 18, 2 (2005), 133–144. http://dblp.
uni-trier.de/db/journals/ijhci/ijhci18.html#LaneNPS05

15. Yang Li. 2010. Gesture Search: A Tool for Fast Mobile
Data Access. In Proceedings of the 23Nd Annual ACM
Symposium on User Interface Software and Technology
(UIST ’10). ACM, New York, NY, USA, 87–96. DOI:
http://dx.doi.org/10.1145/1866029.1866044

16. Wendy E. Mackay. 2002. Which Interaction Technique
Works when?: Floating Palettes, Marking Menus and
Toolglasses Support Different Task Strategies. In
Proceedings of the Working Conference on Advanced
Visual Interfaces (AVI ’02). ACM, New York, NY, USA,
203–208. DOI:
http://dx.doi.org/10.1145/1556262.1556294

17. Joseph Malloch, Carla F. Griggio, Joanna McGrenere,
and Wendy E. Mackay. 2017. Fieldward and Pathward:
Dynamic Guides for Defining Your Own Gestures. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA, 4266–4277. DOI:
http://dx.doi.org/10.1145/3025453.3025764

18. Miguel A. Nacenta, Yemliha Kamber, Yizhou Qiang, and
Per Ola Kristensson. 2013. Memorability of Pre-designed
and User-defined Gesture Sets. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA,
1099–1108. DOI:
http://dx.doi.org/10.1145/2470654.2466142

19. Petra Neumann, Annie Tat, Torre Zuk, and Sheelagh
Carpendale. 2007. KeyStrokes: Personalizing Typed Text
with Visualization. In Proceedings of the 9th Joint
Eurographics / IEEE VGTC Conference on Visualization
(EUROVIS’07). Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 43–50. DOI:
http://dx.doi.org/10.2312/VisSym/EuroVis07/043-050

http://dx.doi.org/10.1145/1449715.1449724
http://dx.doi.org/10.1145/2628363.2628377
http://dx.doi.org/10.1145/2785830.2785844
http://dx.doi.org/10.1145/2470654.2481385
http://dx.doi.org/10.1145/2512349.2512795
http://dx.doi.org/10.1145/354401.354778
http://dx.doi.org/10.1145/2858036.2858452
http://dx.doi.org/10.1145/1029632.1029640
http://dx.doi.org/10.1145/1240624.1240797
http://dx.doi.org/10.1145/120782.120797
http://dx.doi.org/10.1145/169059.169426
http://dblp.uni-trier.de/db/journals/ijhci/ijhci18.html##LaneNPS05
http://dblp.uni-trier.de/db/journals/ijhci/ijhci18.html##LaneNPS05
http://dx.doi.org/10.1145/1866029.1866044
http://dx.doi.org/10.1145/1556262.1556294
http://dx.doi.org/10.1145/3025453.3025764
http://dx.doi.org/10.1145/2470654.2466142
http://dx.doi.org/10.2312/VisSym/EuroVis07/043-050

20. Richard C. Omanson, Craig S. Miller, Elizabeth Young,
and David Schwantes. 2010. Comparison of Mouse and
Keyboard Efficiency. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting 54, 6 (2010),
600–604. DOI:
http://dx.doi.org/10.1177/154193121005400612

21. Robert Pastel. 2006. Measuring the Difficulty of Steering
Through Corners. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’06). ACM, New York, NY, USA, 1087–1096. DOI:
http://dx.doi.org/10.1145/1124772.1124934

22. Dario D. Salvucci, Niels A. Taatgen, and Jelmer P. Borst.
2009. Toward a Unified Theory of the Multitasking
Continuum: From Concurrent Performance to Task

Switching, Interruption, and Resumption. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’09). ACM, New York, NY,
USA, 1819–1828. DOI:
http://dx.doi.org/10.1145/1518701.1518981

23. Christopher D Wickens, Justin G Hollands, Simon
Banbury, and Raja Parasuraman. 2015. Engineering
psychology & human performance. Psychology Press.
197–244 pages.

24. Shumin Zhai and Per Ola Kristensson. 2012. The
Word-gesture Keyboard: Reimagining Keyboard
Interaction. Commun. ACM 55, 9 (Sept. 2012), 91–101.
DOI:http://dx.doi.org/10.1145/2330667.2330689

http://dx.doi.org/10.1177/154193121005400612
http://dx.doi.org/10.1145/1124772.1124934
http://dx.doi.org/10.1145/1518701.1518981
http://dx.doi.org/10.1145/2330667.2330689

	Introduction
	CommandBoard

	Related Work
	Selecting Commands via Discrete Actions
	Selecting Commands via Gestures
	Augmenting Soft Keyboards

	CommandBoard Techniques
	Gesture Keyboards
	Type-and-Execute Commands
	Text Editor Application
	Doodle Application
	Parameterization

	Inline Gesture Shortcuts
	Chat Application
	Contacts Application

	Evaluation
	Method
	Participants
	Hardware and Software
	Procedure
	Part A: Trial Description
	Part B: Recomposition Task

	Measures
	Data Collection

	Results
	Experiment
	Input Time
	Gesture-Typing and Command Selection Time
	Gap Time
	Errors

	Preferences Study
	Pre- and Post-test Results
	Recomposition Task Results
	Self-reported Quantitative Measures
	User Preferences and Debriefing

	Discussion
	Conclusion
	Acknowledgments
	References

