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Global Network Alignment In The Context Of
Aging

Fazle Elahi Faisal, Han Zhao, and Tijana Milenković

Abstract —Analogous to sequence alignment, network alignment (NA) can be used to transfer biological knowledge across
species between conserved network regions. NA faces two algorithmic challenges: 1) Which cost function to use to capture
“similarities” between nodes in different networks? 2) Which alignment strategy to use to rapidly identify “high-scoring” alignments
from all possible alignments? We “break down” existing state-of-the-art methods that use both different cost functions and
different alignment strategies to evaluate each combination of their cost functions and alignment strategies. We find that a
combination of the cost function of one method and the alignment strategy of another method beats the existing methods. Hence,
we propose this combination as a novel superior NA method. Then, since human aging is hard to study experimentally due to
long lifespan, we use NA to transfer aging-related knowledge from well annotated model species to poorly annotated human.
By doing so, we produce novel human aging-related knowledge, which complements currently available knowledge about aging
that has been obtained mainly by sequence alignment. We demonstrate significant similarity between topological and functional
properties of our novel predictions and those of known aging-related genes. We are the first to use NA to learn more about aging.

Index Terms —Network Alignment; Aging; Protein Function Prediction.

✦

1 INTRODUCTION

Bioinformatics research and genomic sequence align-
ment in particular have revolutionized our biological
understanding. Sequence alignment finds regions of
similarity that are a likely consequence of functional
or evolutionary relationships between the sequences
[1]. It has been extensively used, for example, to
construct and interpret phylogenetic trees. Sequence
alignment has been adopted from biology to other
domains, e.g., natural language processing [2].

However, genes’ protein products do not function
in isolation. Instead, they interact with each other
to keep us alive. And this is exactly what protein-
protein interaction (PPI) networks model: in these
networks, nodes correspond to proteins and edges
indicate physical interactions between the proteins.
Unlike genomic sequences, PPI networks enable the
study of complex cellular processes that emerge from
the collective behavior of the proteins. Note that
even though we focus on PPI networks (for reasons
explained above), our study is applicable to any type
of biological networks, as well as to networks in other
domains, such as social networks [3].
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High-throughput biotechologies (such as yeast two-
hybrid (Y2H) assays or affinity purification coupled
to mass spectrometry (AP/MS)) have produced PPI
data for many model organisms and human [4], [5].
As more PPI data is becoming available, meaning-
ful alignments of PPI networks of different species
could be viewed as one of the foremost problems
in computational and systems biology [6], [7], [8],
[9]. Since network alignment aims to find regions of
similarities between PPI networks of different species
(see below), it could guide the transfer of biological
knowledge across species between conserved network
regions [6]. This is important, since many nodes in
PPI networks are currently functionally unannotated
even for well studied model species [10]. In particular,
this is important when studying human aging: since
human aging is hard to study experimentally due
to long lifespan as well as ethical constraints, the
knowledge about aging needs to be transferred from
model species. Traditionally, the transfer of biological
knowledge between species has been restricted to
genomic sequence alignment. However, PPI networks
and sequence data can give complementary biological
insights [11], implying that PPI data can elucidate
function that cannot be extracted from sequence data
by current methods. Thus, restricting alignment to
sequences may limit the knowledge transfer [12], [11].

In addition to across-species transfer of function,
PPI network alignment can also be used to infer phy-
logenetic relationships of different species based on
similarities between their PPI networks [7], [13], [8].
Further, network alignment has application outside of
biological domain as well, with implications, e.g., on
user privacy in online social networks [3].
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Like sequence alignment, network alignment can
be local and global. Initial methods have focused on
local network alignment [14], [15], [16], [17], [18], [19],
[20]. However, since these are generally unable to
find large subgraphs that are conserved between the
aligned networks, methods for global network align-
ment (GNA) (defined below) have been proposed [21],
[22], [23], [24], [9], [7], [13], [8], [25], [3], [26], [27], [28],
[29], [30], [31]. In this study, we focus on GNA, but our
ideas are also applicable to local network alignment.

GNA is computationally hard due to the NP-
completeness of the underlying subgraph isomor-
phism problem, which asks if a network (or graph) ex-
ists as an exact subgraph of another graph [32]. GNA
is the more general problem of finding the best way to
“fit” a graph into another graph even if the first graph
is not an exact subgraph of the second one. Since
GNA is computationally hard, heuristic methods must
be sought. Existing GNA methods typically achieve
an alignment by constructing a mapping between
nodes of the compared networks that is expected to
align topologically and functionally similar network
regions [6]. They do so by considering two algorithmic
challenges: 1) defining a cost function for capturing
“similarities” between nodes in different networks
and 2) presenting an alignment strategy for rapidly
identifying from all possible alignments the high-
scoring alignments with respect to some topological
or biological alignment quality measure [8], [25], [9].

Different existing GNA methods typically use both
different cost functions and different alignment strate-
gies. So, when a method is superior to other methods,
it is unclear whether the superiority comes from its
cost function, its alignment strategy, or both. Hence,
we aim to “break down” existing state-of-the-art GNA
methods into the two components to fairly evaluate
each combination of cost function and alignment strat-
egy. This could result in a superior new GNA method
if the combination of the cost function of one existing
method and the alignment strategy of another existing
method would beat the current methods.

Since the US is on average growing older because
of ∼78 million of baby boomers who have begun
turning 65 in 2011, and since susceptibility to dis-
eases increases with age, studying molecular causes
of aging gains importance. Hence, after we evaluate
the GNA methods, we use them to transfer aging-
related knowledge from well annotated network parts
of some species to poorly annotated network parts
of other species and human in particular. To our
knowledge, we are the first to use network align-
ment to deepen our current knowledge about aging
via across-species, network-based prediction of novel
aging-related genes.

2 OUR APPROACH

Most methods define GNA as a one-to-one function
that injectively maps nodes between two networks.

MI-GRAAL [8] is a state-of-the-art method of this
type. Some exceptions exist [22], [9]. For example,
even though IsoRankN has been described as a GNA
method [9], it allows for many-to-many node mapping
as well as for simultaneous alignment of multiple
networks. MI-GRAAL and IsoRankN are state-of-the-
art. Their superiority has been demonstrated over
other popular methods [8], [9], including a num-
ber of MI-GRAAL’s [7], [13] and IsoRankN’s [21],
[23] predecessors, as well as Graemlin [16], [22] and
NetworkBLAST-M [15].

As a proof of concept that it is indeed important
to evaluate the relevance of each of two GNA com-
ponents (cost function and alignment strategy) sep-
arately, we focus on a thorough and fair evaluation
of these two state-of-the-art GNA algorithms, i.e., all
combinations of their cost functions and alignment
strategies. (Note that even though we focus on MI-
GRAAL and IsoRankN, our study is applicable to any
existing GNA method.) We aim to identify the best of
the two cost functions when same alignment strategy
is used. Ideally, we would also aim to identify the best
of the two alignment strategies when same cost func-
tion is used. However, IsoRankN’s alignment strategy
that allows for many-to-many node mapping cannot
be directly and fairly evaluated against MI-GRAAL’s
one-to-one mapping strategy because of their different
nature. Nonetheless, we perform at least some indirect
comparison of the two alignment strategies under
same cost function, when we use them to predict new
aging-related knowledge (see below).

Many existing GNA algorithms by default use in
their cost function biological information external to
network topology, such as sequence similarity [21],
[9], [22], [24]. For each combination of cost function
and alignment strategy, we first test how much of new
biological knowledge can be uncovered solely from
topology before integrating it with sequences [7], [13],
[8]. Then, since both GNA algorithms do allow for
adding sequence data to the cost function, we test
whether using both topology and sequences improves
alignment quality compared to using only topology
(or only sequences).

We evaluate the different combinations of cost func-
tions and alignment strategies (or “network aligners”)
as follows. We evaluate alignments resulting from
MI-GRAAL’s strategy both topologically (with respect
to the amount of topology that is conserved across
networks) and biologically (with respect to functional
enrichment of the aligned nodes). Since IsoRankN’s
alignment strategy results in many-to-many node
mappings, we cannot evaluate its alignments topolog-
ically. Instead, we evaluate the alignments biologically
(with respect to functional enrichment).

We find that MI-GRAAL’s cost function typically
outperforms IsoRankN’s cost function under both MI-
GRAAL’s and IsoRankN’s alignment strategy, with
respect to almost all alignment quality measures,
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and independent on whether topology only or both
topology and sequence are used in the cost func-
tion. Therefore, while the original IsoRankN, which
combines IsoRankN’s cost function and IsoRankN’s
alignment strategy, has been considered as a state-
of-the-art method for multiple GNA, we show that
the combination of MI-GRAAL’s cost function and
IsoRankN’s alignment strategy outperforms the origi-
nal IsoRankN. As such, this combination represents a
new superior method for multiple GNA, which is an
important contribution of our study.

When we study how well the different aligners
uncover existing aging-related knowledge, we again
find that MI-GRAAL’s cost function dominates that
of IsoRankN, especially under IsoRankN’s alignment
strategy. By “dominates”, we mean that one method
more often correctly aligns known aging-related net-
work parts across species than another method. In
this context, in an indirect comparison, we find that
IsoRankN’s alignment strategy is superior under MI-
GRAAL’s cost function, while MI-GRAAL’s alignment
strategy is superior under IsoRankN’s cost function.

We use all alignments in which the aligned net-
work parts are statistically significantly enriched in
known aging-related genes to predict novel aging-
related genes in a given species based on their known
aging-related aligned partners in other species. There-
fore, another contribution of our study is a new
data set of aging-related knowledge, obtained from
a novel source of biological data, namely PPI net-
works. Thus, our study’s output complements cur-
rently available aging-related knowledge that has
been obtained mainly by genomic sequence align-
ment, especially in human.

We validate our novel aging-related predictions in
human by: 1) showing that they significantly overlap
with known aging-related genes from independent,
external “ground truth” data sets; 2) demonstrating
that their topological and functional properties are
significantly similar to the properties of known aging-
related genes, whereas their properties are different
than the properties of genes that have not yet been
associated to aging; 3) showing that our predictions
are linked to aging-related biological pathways and
diseases; and 4) associating almost all of our top-
scoring predictions to aging via literature search.

3 METHODS

3.1 Data sets

We align PPI networks of four species: S. cerevisiae
(yeast), D. melanogaster (fly), C. elegans (worm), and
H. sapiens (human). Their networks have 3,321 pro-
teins and 8,021 PPIs, 7,111 proteins and 23,376 PPIs,
2,582 proteins and 4,322 PPIs, and 6,167 proteins and
15,940 PPIs, respectively. They are largest connected
components of Y2H networks from BioGRID 3.1.90
[4]. Of all PPIs, including “co-complex” AP/MS PPIs,

we focus on “binary” Y2H PPIs because they are of
higher quality than literature-curated PPIs supported
by a single publication [33], [5]. What is important for
a fair evaluation is that all aligners are tested on the
same data, be it Y2H, AP/MS, or other network type.

For sequence similarity part of the cost function,
we use BLAST bit-values [1] from NCBI database
(http://www.ncbi.nlm.nih.gov/protein/).

To evaluate biological alignment quality with re-
spect to functional enrichment of the aligned nodes,
we use Gene Ontology (GO) data from July 2012 [34].

When we evaluate quality of alignments with re-
spect to how well they uncover existing aging-related
knowledge, we use GenAge data (version Build 16)
[35] from September 2012. This data set contains 483,
79, 175, and 218 aging-related genes that are present
in the yeast, fly, worm, and human PPI network,
respectively. We refer to this set of aging-related genes
as GenAge. Of the 218 human genes, only three have
been linked to aging in humans directly. All others
have been linked to aging in humans indirectly, e.g.,
via sequence-based homology from model species.

We also use GenAge to predict new aging-related
genes from the alignments. Then, we validate the
human predictions in two independent human aging-
related “ground truth” data sets: 1) ExpressionAge, a
set of 234 genes from the human PPI network that
were predicted as aging-related because their expres-
sion levels significantly correlated with age [36], and
2) DyNetAge, a set of 394 genes from the human PPI
network that were predicted as aging-related because
their topological centralities in dynamic, age-specific
PPI networks significantly changed with age [37]; the
age-specific networks were obtained by integrating
aging-related gene expression data with current static
human PPI network data [37].

In all data sets, for consistency, gene names have
been converted into gene IDs using DAVID tool [38].

3.2 Network aligners

MI-GRAAL. We previously designed a sensitive
graphlet-based measure of topology, called node
graphlet degree vector (node-GDV), that captures up to
4-deep neighborhood of a node [39], [40]; a graphlet
is a small induced subgraph of the network [41].
We designed a measure of topological similarity of
such extended neighborhoods of two nodes, called
node-GDV-similarity. Based on this measure, we de-
veloped GRAAL (GRAph ALigner) [7] and H-GRAAL
(Hungarian-based GRAAL) [13] GNA algorithms that
use topology only and can thus align networks in any
domain, including social and computer networks [3].
Both use node-GDV-similarity as the cost function.
They differ in their alignment strategies, as follows.
GRAAL, a greedy “seed and extend” approach, like
BLAST [1], first chooses the most node-GDV-similar
“seed” node pair and then greedily expands the align-
ment radially outward around the seed to quickly
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find approximate alignments. H-GRAAL finds optimal
alignments with respect to the cost function by using
computationally expensive Hungarian algorithm, a
combinatorial optimization algorithm for finding a
maximum weight matching in a weighted bipartite
graph [32]. When used to align PPI networks of differ-
ent species, both methods exposed regions of similar-
ity an order of magnitude larger than other algorithms.
The newer MI-GRAAL also uses node-GDV-similarity
as the cost function while allowing for integration of
additional biological data types, including sequence
similarity. The cost function automatically adjusts the
weights of nodes’ topological similarity and their
sequence similarity. MI-GRAAL’s alignment strategy
combines GRAAL’s seed-and-extend alignment strat-
egy with H-GRAAL’s alignment strategy of solving
the assignment problem, to further improve align-
ment quality at low computational cost [8].

IsoRankN. Its cost function is a spectral graph
method which uses the intuition that two nodes
should be matched only if their neighbors can also
be matched [21]. The cost function can include se-
quence similarity in addition to topological similarity.
The weights of topological similarity and sequence
similarity are balanced by the parameter α, which is
in [0,1] range. For example, if α = 0.6, then the weight
of topological similarity and sequence similarity is
60% and 40% of the total cost function, respectively.
In our experiments, we set α to 0.7, as this is the
recommended value in the original IsoRankN paper
[9]. IsoRankN’s alignment strategy relies on the notion
of node-specific rankings and uses a method similar
to PageRank-Nibble algorithm [9].

MI-GRAAL vs. IsoRankN. Cost functions of the two
methods are conceptually similar: both consider as
good matches those nodes whose extended network
neighborhoods match well. However, the details of
the two cost functions and their implementations are
different [39], [8], [21], [9]. Consequently, as we will
show, they result in alignments of different quality
even under same alignment strategy.

Alignment strategies of the two methods are very
different even conceptually. MI-GRAAL’s alignment
is a one-to-one function that injectively maps nodes
between two networks. IsoRankN’s alignment allows
for a many-to-many node mapping (i.e., multiple nodes
in one network can simultaneously be mapped to
multiple nodes in another network), as well as for
simultaneous alignment of multiple networks.

The different nature of the two alignment strate-
gies makes their direct comparison hard. Hence, we
compare the two cost functions under same alignment
strategy, for each of the two alignment strategies.
However, we cannot directly compare the two align-
ment strategies under same cost function. But, we
still aim to compare them indirectly, in the context
of across-species prediction of aging-related genes.

Combining each of the two cost functions with each
of the two alignment strategies results in four network
aligners. For each aligner, we align networks when
using only topology in the cost function, as well as
when using both topology and sequence in the cost
function. Thus, we deal with two versions of each
aligner, i.e., with eight aligners (Table 1). Also, for each
of the two alignment strategies, we use sequence simi-
larity information only in their cost function, resulting
in two additional aligners (Table 1).

TABLE 1
Eight aligners resulting from two cost functions, two
alignment strategies, and two data types used in the

cost function (topology only (“T”) or both topology and
sequence (“T&S”)), plus two aligners resulting from

using sequence only (“S”) as the cost function within a
given alignment strategy.

Aligner Cost function Align. strategy Data

MI-MI-T MI-GRAAL MI-GRAAL T
MI-MI-TS MI-GRAAL MI-GRAAL T&S
Iso-MI-T IsoRankN MI-GRAAL T
Iso-MI-TS IsoRankN MI-GRAAL T&S
MI-Iso-T MI-GRAAL IsoRankN T
MI-Iso-TS MI-GRAAL IsoRankN T&S
Iso-Iso-T IsoRankN IsoRankN T
Iso-Iso-TS IsoRankN IsoRankN T&S

X-MI-S N/A (or “X”) MI-GRAAL S
X-Iso-S N/A (or “X”) IsoRankN S

3.3 Evaluating different network aligners

We divide our evaluation into two steps. First,
we evaluate the different cost functions under MI-
GRAAL’s alignment strategy. That is, we compare
MI-MI-T, MI-MI-TS, Iso-MI-T, Iso-MI-TS, and X-MI-
S, when each of them is used to produce six pairwise
alignments of the four networks (Section 3.3.1). Sec-
ond, we evaluate the cost functions under IsoRankN’s
alignment strategy. That is, we compare Iso-Iso-T, Iso-
Iso-TS, MI-Iso-T, MI-Iso-TS, and X-Iso-S, when each of
them is used to produce one simultaneous alignment
of all four networks (Section 3.3.2). Since the two
evaluation steps correspond to the two very different
alignment strategies, in each step, we use measures
of alignment quality that are tailored for the given
alignment strategy, as follows.

3.3.1 Evaluation under MI-GRAAL’s align. strategy

Given two networks G1(V1, E1) and G2(V2, E2), where
|V1| ≤ |V2|, MI-GRAAL’s alignment strategy results in
a total injective function f : V1 → V2 [8]. Function f is
total if it maps all elements in V1 to elements in V2 and
it is injective if it never maps different elements in V1

to the same element in V2. We denote by V ′
2 = f(V1)

the set of nodes from G2 that are aligned to nodes
from V1, by E′

2 = Ef(V1) the set of edges from G2 that
exist between the nodes in V ′

2 , and by G′
2(V

′
2 , E′

2) the
subgraph of G2 induced on f(V1).
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We evaluate MI-MI-T, MI-MI-TS, Iso-MI-T, Iso-MI-
TS, and X-MI-S topologically and biologically.

Topological evaluation. We use the following mea-
sures of topological alignment quality [8]:

1) Edge correctness (EC), the percentage of edges
from G1, the smaller network (in terms of the
number of nodes), which are aligned to edges
from G2, the larger network [7], [8]. Formally,

EC =
|E1∩E′

2
|

|E1|
× 100%, where the numerator is

the number of “conserved” edges, i.e., edges that
are aligned under the given node mapping. The
larger the EC, the better the alignment.

2) Induced conserved structure (ICS): ICS =
|E1∩E′

2
|

|E′

2
| ×100%. It has been argued that EC might

fail to differentiate between alignments that one
might intuitively consider to be of different
topological quality [25], since it is defined with
respect to edges in E1. For example, aligning
a k-node cycle in G1 to a k-node cycle in G2

would result in the same EC as aligning a k-
node cycle in G1 to a k-node clique (complete
graph) in G2. Clearly, the former is intuitively a
better alignment than the latter, since no edges
that exist between the k nodes in G2 are left
unaligned in the first case, whereas many edges
are left unaligned in the second case. Since ICS
is defined with respect to edges in E′

2, it would
have the maximum value of 100% when aligning
a k-node cycle to a k-node cycle, and it would
have a lower value when aligning a k-node cycle
to a k-node clique. The larger the ICS, the better.

3) Node coverage (NC), the percentage of |V1| aligned
node pairs that participate in the conserved
edges. The larger the NC, the better, as fewer
nodes are mapped across networks that do not
add to edge conservation.

4) The size of the largest connected common subgraph
(LCCS) [7], [8], which we use because of two
alignments with similar EC, ICS, or NC scores,
one could expose large, contiguous, and topo-
logically complex regions of network similarity,
while the other could fail to do so. Thus, in ad-
dition to counting aligned edges (as EC and ICS
do) or nodes that participate in the aligned edges
(as NC does), it is important that the aligned
edges cluster together to form large connected
subgraphs rather than being isolated. Hence, we
define a connected common subgraph (CCS) as
a connected subgraph (not necessarily induced)
that appears in both networks [13], [8]. We mea-
sure the size of the largest CCS (LCCS) in terms
of the number of nodes as well as edges. Large
LCCS are desirable.

Biological evaluation. Only alignments in which
many aligned node pairs perform the same function
should be used to transfer function from annotated
parts of one network to unannotated parts of another

network. Hence, we measure Gene Ontology (GO)
[34] enrichment of aligned proteins pairs, i.e., the
percentage of protein pairs in which the two proteins
share at least one GO term, out of all aligned protein
pairs in which both proteins are annotated with at
least one GO term. We refer to this percentage as
GO correctness. We do this with respect to complete
GO annotation data, independent of GO evidence
code. Also, since many GO annotations have been
obtained via sequence comparison, and since some
of the aligners use sequence information, we repeat
the analysis considering only GO annotations with
experimental evidence codes. In this case, we refer
to GO correctness as experimental GO correctness. The
higher the GO correctness, the better.

3.3.2 Evaluation under IsoRankN’s align. strategy
With IsoRankN’s multiple network alignment strategy,
we align all PPI networks simultaneously.

Since IsoRankN’s alignment strategy allows for
multiple nodes in one network to be mapped to
multiple nodes in another network, its output is a
set of aligned clusters, where no two clusters overlap,
but each cluster can contain multiple nodes from
each network. Thus, IsoRankN’s output cannot be
quantified topologically with EC, ICS, NC, or LCCS,
as one many-to-many node alignment can produce
exponentially many one-to-one node alignments and
enumerating all of them is infeasible [7].

Instead of using EC, ICS, NC, or LCCS, we use
the original IsoRankN’s measures [9] to evaluate MI-
Iso-T, MI-Iso-TS, Iso-Iso-T, Iso-Iso-TS, and X-Iso-S.
Intuitively, a good IsoRankN’s alignment should pro-
duce aligned clusters such that genes in each cluster
are functionally uniform or consistent. Also, it should
produce many such clusters, so that it covers as many
of the proteins from the aligned networks as possible.
IsoRankN captures the notions of consistency and
coverage with the following evaluation measures:

1) The number of aligned clusters, where the higher
the number, the better the alignment.

2) Exact cluster ratio, the percentage of aligned clus-
ters in which all proteins share at least one GO
term. The higher the value, the better.

3) Exact protein ratio, the percentage of all proteins
that are in the exact clusters (as defined above).
The higher the value, the better.

4) Mean entropy of alignment. First, we compute the
entropy of an aligned cluster S∗

v as: H(S∗
v ) =

H(p1, p2, . . . , pd) = −
∑d

i=1 pi log pi, where pi is
the percentage of all proteins in S∗

v that have GO
term i, and d is the total number of GO terms
[9]. Then, the mean entropy of the alignment
is obtained by averaging entropies across all
clusters in the alignment. The lower the entropy
of the alignment, the higher its average within-
cluster GO term consistency, and consequently,
the better its biological quality.
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5) Normalized mean entropy of alignment. First, we
compute the normalized entropy of an aligned
cluster S∗

v as: H̄(S∗
v ) = 1

log d
H(S∗

v ). Then, the
mean normalized entropy is obtained by averag-
ing normalized entropies across all aligned clus-
ters. Low normalized mean entropy is desirable.

3.4 Network alignment in the context of aging

3.4.1 Aging under MI-GRAAL’s alignment strategy

MI-GRAAL’s alignment strategy produces pairwise
GNA and one-to-one node mapping. Hence, we eval-
uate different aligners under MI-GRAAL’s alignment
strategy in the context of aging as follows. We denote
a node pair as aging-related if both nodes are known
aging-related genes. We count the number of aging-
related node pairs in an alignment and determine the
statistical significance of this result via the hyperge-
ometric test. Let V1 and V2 be the sets of nodes in
two networks to be aligned, and let A1 and A2 be
the subsets of V1 and V2 that are known aging-related
genes, respectively. Let E be the set of all node pairs
that could be aligned: |E| = |V1|×|V2|. Let G be the set
of all aging-related node pairs that could be aligned:
|G| = |A1| × |A2|. Given an alignment, let H denote
the set of aligned node pairs: |H | = min(|V1|, |V2|).
Let O be the subset of H containing all aligned aging-
related node pairs, i.e., the intersection between G and
H . Then, the probability p of observing |O| or more
aging-related node pairs in the alignment by chance

is: p = 1 −

|O|−1
∑

i=0

(

|E|
i

)(|E|−|H|
|G|−i

)

(|E|
|G|

)
. Throughout the paper,

we use p-value threshold of 0.05.
We focus on all statistically significant alignments.

In such an alignment, we predict a gene as aging-
related if the gene is aligned to a known aging-related
gene. Then, we measure precision, recall, and F-score
of all predictions in the given alignment. Precision
is the percentage of the predictions that are known
aging-related genes. Recall is the percentage of known
aging-related genes that are among the predictions. F-
score is the harmonic mean of precision and recall.

3.4.2 Aging under IsoRankN’s alignment strategy

IsoRankN’s alignment strategy produces multiple
GNA and many-to-many node mapping. Hence, we
evaluate different aligners under IsoRankN’s align-
ment strategy in the context of aging as follows. We
measure the enrichment in known aging-related genes
of each aligned cluster, and we measure the statistical
significance of this result via the hypergeometric test
(Section 3.4.1), where now E is the set of nodes in
the given alignment, i.e. nodes covered by all aligned
clusters, G is the subset of nodes from E that are
known aging-related genes, H is the set of nodes in
the aligned cluster of interest, and O is the subset of
nodes from H that are known aging-related genes.

We focus on all statistically significant clusters. We
predict each gene in such a cluster as aging-related,
since the gene is aligned to significantly many known
aging-related genes. Then, we measure precision, re-
call, and F-score of all predictions made from all
statistically significant clusters in the given alignment.

3.5 Validation of novel aging-related predictions

We aim to validate our novel aging-related predictions
in human by: 1) computing their overlap with known
aging-related genes from independent, external data
sets, in hope to observe the significant overlap; 2)
comparing their topological positions in the human
PPI network against the positions of known aging-
related genes as well as of genes that have not yet
been implicated in aging, in hope to observe signifi-
cant similarity of our predictions with the former but
not the latter; 3) performing functional (Gene Ontol-
ogy – GO) and disease-related (Disease Ontology –
DO) enrichment analysis of our predictions, in hope
to link them to aging-related biological processes; 4)
computing the overlap between GO and DO terms
enriched in our predictions and those enriched in
known aging-related genes, in hope to observe the
significant overlap; and 5) performing manual litera-
ture validation of our highest-confidence predictions,
in hope to link them to aging in scientific articles.

3.5.1 Prediction overlap with the “ground truth” data

We measure the statistical significance of the overlap
of genes in two data sets via the hypergeometric test
(Section 3.4.1), where now E is the set of genes from
the human network, G is the subset of genes from E

that are in one of the data sets, H the subset of genes
from E that are in the other data set, and O is the set
of genes that are in the overlap between G and H .

3.5.2 Topological properties of our predictions
We analyze the topological position of a node in
the network with respect to seven popular node cen-
trality measures [42], [43], [44], [45], [46], as differ-
ent measures capture different aspects of the net-
work position of the node. The measures are: degree
centrality (DEGC), k-coreness centrality (KC), graphlet
degree centrality (GDC), clustering coefficient central-
ity (CLUSC), betweenness centrality (BETWC), closeness
centrality (CLOSEC), and eccentricity centrality (ECC)
(see Supplementary Section S1.1 for the definitions).

Using each of the above measures, we compute the
centrality of each node in the human PPI network.
We group the nodes into those that are: 1) our novel
predictions; 2) known aging-related genes; and 3)
currently not associated with aging. Then, we perform
Wilcoxon Rank-Sum test between centrality values of
each pair of the groups to test whether the two node
groups have statistically different centrality values,
i.e., topological positions in the network.
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3.5.3 Functional properties of our predictions
We study the enrichment of a gene set in biological
process GO terms [47]. We use: 1) all 4,137 GO terms
that annotate (independent on the evidence code) at
least two genes from the human PPI network and
2) 1,656 GO terms that annotate (with respect to an
experimental evidence code only) at least two genes
from the network. For GO term g, we compute the
statistical significance of its enrichment via the hyper-
geometric test (Section 3.4.1), where now E is the set
of genes from the network that are annotated by any
GO term, G is the gene set in which we are measuring
GO term enrichment, H is the subset of genes from
E that are annotated by GO term g, and O is the set
of genes in the overlap between G and H .

3.5.4 Functional overlap with the “ground truth” data
We measure the statistical significance of the overlap
of GO terms enriched in one gene set and GO terms
enriched in another gene set via the hypergeometric
test (Section 3.4.1), where now E is the set of GO terms
that annotate at least two genes from the human PPI
network, G is the set of GO terms enriched in any
one of the two gene sets, H is the set of GO terms
enriched in the other gene set, and O is the set of GO
terms that are in the overlap between G and H .

3.5.5 Disease-related properties of our predictions
We study the enrichment of a gene set in all 467 DO
terms that annotate at least two genes from the human
network [48] just as we study GO term enrichments.

3.5.6 Disease overlap with the “ground truth” data
We study the overlap of DO terms from two gene sets
in the same way as when we study GO term overlaps.

3.5.7 Literature validation of our predictions
Since automatic literature validation is prone to er-
rors, we manually search for our novel predictions
in PubMed articles for an evidence that a predic-
tion is (in)directly linked to aging. As such man-
ual search is time-consuming, we perform it only
on our highest-confidence predictions. By highest-
confidence, we mean the following. We score each
novel prediction based on the minimum p-value over
all alignment(s) supporting the prediction (Sections
3.4.1 and 3.4.2), as well as on the number of aligners
supporting the prediction, so that the lower the p-
value and the more aligners, the higher the confidence
score of the prediction. Specifically, we convert the p-
value into the “aging confidence score” (CSAG) by
taking its negative logarithm. We refer to the number
of aligners that support the prediction as the “aligner
confidence score” (CSAL). After we normalize each of
the two scores by dividing it with the maximum score
over all novel predictions, we compute the “total con-
fidence score” (CST ) of a gene as the arithmetic mean
of the normalized CSAG and CSAL scores. Then, we
search in the literature for the highest-scoring genes.

4 RESULTS

4.1 Evaluating different network aligners

4.1.1 MI-GRAAL’s vs. IsoRankN’s cost function under
MI-GRAAL’s alignment strategy
Topological evaluation. We compare MI-MI-T, MI-
MI-TS, Iso-MI-T, Iso-MI-TS, and X-MI-S with re-
spect to EC, ICS, NC, and LCCS (Section 3.3.1). MI-
GRAAL’s cost function outperforms IsoRankN’s (and
sequence-only) cost function within MI-GRAAL’s
alignment strategy, for each measure (Fig. 1).

One would expect that using topology only in the
cost function would result in alignments that are
superior in terms of topological quality to alignments
produced when using both topology and sequence in
the cost function, as sequence would favor aligning
network parts which are functionally but not neces-
sarily topologically similar. Surprisingly, this is not the
case for any of the cost functions: using both sequence
and topology results in alignments of almost the same
topological quality as using topology only (Fig. 1).
Yet, using some topology in the (MI-GRAAL’s) cost
function significantly improves topological alignment
quality compared to using sequence only (Fig. 1).

Biological evaluation. We compare MI-MI-T, MI-MI-
TS, Iso-MI-T, Iso-MI-TS, and X-MI-S with respect to
(experimental) GO correctness (Section 3.3.1). Now,
quality of the different aligners is nearly indistin-
guishable (Fig. 2). Thus, the choice of the cost function
under MI-GRAAL’s alignment strategy does not affect
biological alignment quality.

One would expect that using both topology and se-
quence (or only sequence) would result in alignments
that are biologically superior to alignments produced
when using topology only, as the latter would favor
aligning network parts which are topologically but
not necessarily functionally similar. Surprisingly, this
is not the case: using topology only results in align-
ments of the same biological quality as using both
sequence and topology (or only sequence) (Fig. 2).

4.1.2 MI-GRAAL’s vs. IsoRankN’s cost function under
IsoRankN’s alignment strategy
We compare MI-Iso-T, MI-Iso-TS, Iso-Iso-T, Iso-Iso-
TS, and X-Iso-S with respect to: the number of
aligned clusters, exact cluster ratio, exact protein ratio,
mean entropy, and mean normalized entropy (Sec-
tion 3.3.2). Using both topology and sequence within
MI-GRAAL’s cost function significantly outperforms
using topology only as well as using both topology
and sequence within IsoRankN’s cost function, with
respect to each measure; also, it outperforms using
sequence-only cost function (Table 2). Further, us-
ing topology only within MI-GRAAL’s cost function
outperforms using topology only as well as using
both topology and sequence within IsoRankN’s cost
function for three of the five measures; also, it out-
performs using sequence only for two of the five
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(A) (B)

(C) (D)

Fig. 1. Topological alignment quality of different cost functions under MI-GRAAL’s alignment strategy. (A) EC, (B)
ICS, (C) NC, and (D) LCCS scores of MI-MI-T, MI-MI-TS, Iso-MI-T, Iso-MI-TS, and X-MI-S when they are used
on each pair of networks of yeast (Y), fly (F), worm (W), and human (H). The size of the LCCS is given in terms
of the number of its nodes; results are equivalent with respect to the number of edges in the LCCS (results not
shown). In all panels, the higher the values, the better the alignment quality.

measures (Table 2). Hence, MI-GRAAL’s cost function
dominates IsoRankN’s (as well as sequence-only) cost
function under IsoRankN’s alignment strategy.

Fig. 2. Biological alignment quality of different cost
functions under MI-GRAAL’s alignment strategy. GO
correctness scores of MI-MI-T, MI-MI-TS, Iso-MI-T, Iso-
MI-TS, and X-MI-S are shown, when they are used on
each pair of networks of yeast (Y), fly (F), worm (W),
and human (H). The higher the score, the better the
alignment quality. The results are consistent for exper-
imental GO correctness (Supplementary Fig. S1).

4.1.3 Evaluation: summary and significance

MI-GRAAL’s cost function is superior to IsoRankN’s
(and sequence-only) cost function, independent on the
alignment strategy or evaluation measure. We recom-
mend using MI-GRAAL’s cost function under both
MI-GRAAL’s and IsoRankN’s alignment strategy, and
we recommend using both topology and sequence
in MI-GRAAL’s cost function (especially under Iso-
RankN’s alignment strategy). Since the sequence-only
aligners (X-MI-S and X-Iso-S) do not add to alignment
quality compared to using some topology in the cost
function, we do not consider them in Section 4.2.

The significance of our results is as follows. First, we
show that it is indeed important to consider separately
the contribution of a method’s cost function and its
alignment strategy to its alignment quality, which
the research community has typically failed to do
so far. Second, while the original IsoRankN, which

combines IsoRankN’s cost function and IsoRankN’s
alignment strategy, has been considered as a state-
of-the-art method for multiple GNA, we demonstrate
that combing MI-GRAAL’s cost function with Iso-
RankN’s alignment strategy outperforms the original
IsoRankN. Therefore, an important contribution of
our study is a new superior method for multiple
GNA, namely MI-Iso-TS.

4.2 Network alignment in the context of aging

Since human aging is hard to study experimentally,
the aging-related knowledge needs to be transferred
from model species. This transfer has mostly been
restricted to sequence alignment [49], [35]. But, since
topology and sequence can give complementary bi-
ological insights [12], [11], and since not all aging-
related genes implicated in aging in model species
have sequence orthologs in human [50], restricting
comparison to sequence may limit the knowledge
transfer. Network alignment can help by transferring
aging-related knowledge between conserved network
regions of different species.

Hence, we evaluate the eight combinations of cost
functions and alignment strategies from Table 1 (with-
out considering X-MI-S and X-Iso-S sequence-only
aligners) by measuring how well they can uncover
existing aging-related knowledge, in the sense that
they align known aging-related network parts of one
species to known aging-related network parts of other
species. Then, from the alignments that achieve this
with statistically significantly high accuracy, we pre-
dict new aging-related knowledge in currently unan-
notated network regions whenever such regions have
been aligned to known aging-related network regions.

4.2.1 Aging under MI-GRAAL’s alignment strategy

In four of six pairs of species, at least one of MI-
MI-T, MI-MI-TS, Iso-MI-T, and Iso-MI-TS aligns a sta-
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TABLE 2
Biological alignment quality of different cost functions under IsoRankN’s alignment strategy. MI-Iso-T, MI-Iso-TS,
Iso-Iso-T, Iso-Iso-TS, and X-Iso-S are evaluated when aligning all networks simultaneously with respect to five

measures. The higher the values for the first three measures and the lower the values for the last two
measures, the better the alignment quality. The best aligner for each measure is shown in bold.

Measure MI-Iso-T MI-Iso-TS Iso-Iso-T Iso-Iso-TS X-Iso-S

Number of clusters 1923 3095 79 99 1627
Exact cluster ratio 10.3% 41.9% 7.6% 10.1% 12.7%
Exact protein ratio 6.1% 40.4% 5.2% 5.9% 11.5%
Mean entropy 1.31 0.66 1.29 1.23 1.06
Mean normalized entropy 0.84 0.54 0.86 0.82 0.84

(A) (B)
Fig. 3. Performance of different cost functions under MI-GRAAL’s alignment strategy in the context of aging.
(A) The number of aligned node pairs in which both nodes are known aging-related genes, when each pair of
the four networks (yeast (Y), fly (F), worm (W), and human (H)) is aligned by each of the four aligners (MI-MI-T,
MI-MI-TS, Iso-MI-T, and Iso-MI-TS). Pink color indicates that the observed number of aging-related aligned pairs
is statistically significant, whereas blue color indicates that it is not. (B) The number of novel aging-related genes
predicted by each aligner in each species from the statistically significant alignments (in pink in panel (A)); only
predictions that are currently not associated with aging are shown.

TABLE 3
MI-GRAAL’s vs. IsoRankN’s cost function with respect

to known aging-related knowledge (in terms of
precision, recall, and F-score) across all species

under: 1) MI-GRAAL’s alignment strategy when using
topology only, 2) MI-GRAAL’s alignment strategy when

using both topology and sequence, 3) IsoRankN’s
alignment strategy when using topology only, and 4)

IsoRankN’s alignment strategy when using both
topology and sequence.

Aligners Precision Recall F-score

1 MI-MI-T vs. 6.3% vs. 5.2% vs. 5.7% vs.
Iso-MI-T 13.2% 7.5% 9.6%

2 MI-MI-TS vs. 11.1% vs. 7.3% vs. 8.8% vs.
Iso-MI-TS 9.8% 2.9% 4.5%

3 MI-Iso-T vs. 48.4% vs. 7.9% vs. 13.5% vs.
Iso-Iso-T 47.6% 1.0% 2.0%

4 MI-Iso-TS vs. 52.9% vs. 18.4% vs. 27.3% vs.
Iso-Iso-TS 50.0% 0.6% 1.2%

tistically significantly large number of known aging-
related genes across species (Section 3.4.1). MI-MI-
T achieves this when aligning two pairs of species,
whereas MI-MI-TS, Iso-MI-T, and Iso-MI-TS each
achieve this when aligning one pair of species (Fig.
3 (A)). Thus, all aligners perform comparably. We use
the five significant alignments (in pink in Fig. 3 (A))
to predict aging-related genes (Section 3.4.1).

In terms of the ability of the aligners to correctly

predict known aging-related knowledge, MI-GRAAL’s
cost function is superior when using both topology
and sequence, while IsoRankN’s cost function is supe-
rior when using topology only (Table 3). Hence, again,
the two are comparable. In terms of the ability of the
aligners to predict new aging-related knowledge, MI-
MI-T makes the most predictions, followed by MI-
MI-TS, Iso-MI-T, and Iso-MI-TS, respectively (Fig. 3
(B)). In human, MI-MI-TS makes the most predictions,
followed by MI-MI-T and Iso-MI-TS, whereas Iso-MI-
T fails to predict any new aging-related genes (Fig. 3
(B)). Hence, in this context, MI-GRAAL’s cost function
is in general superior to IsoRankN’s cost function.

Some overlap between new predictions
of the different aligners under MI-GRAAL’s
strategy is encouraging (Supplementary Fig.
S2). We provide the list of the predictions
(http://nd.edu/∼cone/netal/ST1.xlsx).

4.2.2 Aging under IsoRankN’s alignment strategy

Compared to Iso-Iso-T and Iso-Iso-TS, MI-Iso-T and
MI-Iso-TS result in more aligned clusters that are
statistically significantly enriched in known aging-
related genes, and the enriched clusters cover more
proteins (Section 3.4.2 and Fig. 4 (A) and (B)). Hence,
MI-GRAAL’s cost function is superior under Iso-
RankN’s strategy. We use the significant clusters to
predict aging-related genes (Section 3.4.2).
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In terms of the ability of the aligners to correctly
predict known aging-related knowledge, MI-GRAAL’s
cost function is significantly superior to IsoRankN’s
(Table 3). In terms of the ability of the aligners to pre-
dict new aging-related knowledge, MI-Iso-TS makes
the most predictions, followed by MI-Iso-T, Iso-Iso-T,
and Iso-Iso-TS, respectively (Fig. 4 (C)). Hence, MI-
GRAAL’s cost function is again dominant.

Unlike under MI-GRAAL’s alignment strategy
(Supplementary Fig. S2), there is no overlap in
any species between new predictions of the dif-
ferent aligners under IsoRankN’s strategy. Only in
fly, two predictions overlap between MI-Iso-T and
MI-Iso-TS. We provide the list of the predictions
(http://nd.edu/∼cone/netal/ST2.xlsx).

4.2.3 MI-GRAAL’s vs. IsoRankN’s alignment strategy
under same cost function

Thus far, we were unable to directly compare MI-
GRAAL’s and IsoRankN’s alignment strategies un-
der same cost function due to their different nature.
However, here, we can indirectly compare the two, by
comparing precision, recall, and F-score values of their
known aging-related predictions, as well as by evalu-
ating the amount of novel predictions that they can
make. Note, however, that aging-related predictions,
based on which this comparison is made, have been
derived differently for the two alignment strategies
(Sections 3.4.1 and 3.4.2). Plus, the comparison is done
only on the biological level, ignoring any topological
aspects, since IsoRankN’s alignments cannot be eval-
uated topologically. Hence, this comparison may be
unfair to MI-GRAAL.

With respect to known aging-related knowledge,
interestingly, IsoRankN’s alignment strategy is su-
perior to MI-GRAAL’s strategy under MI-GRAAL’s
cost function, while MI-GRAAL’s alignment strategy
is superior to IsoRankN’s strategy under IsoRankN’s
cost function (Table 4). Overall, the best performing
combination is MI-Iso-TS, as it results in the highest
precision as well as recall.

With respect to novel aging-related knowledge,
alignment strategy of MI-GRAAL’s is always superior,
independent of the cost function (Table 5). The over-
lap between novel predictions of the two alignment
strategies under same cost function is relatively low,
and only MI-MI-T and MI-Iso-T result in a statistically
significant overlap (Table 5).

We further compare the two alignment strategies by
identifying novel aging-related predictions in human
by each alignment strategy, regardless of the cost func-
tion, and by computing the overlap of the resulting
predictions with each of two external, independent
sets of known human aging-related genes: Expression-
Age and DyNetAge (Section 3.1). By doing so, we find
that MI-GRAAL’s alignment strategy is superior to
IsoRankN’s. Specifically, of 720 human aging-related

genes predicted under MI-GRAAL’s alignment strat-
egy, 36 are present in ExpressionAge (p-value of 0.072)
and 79 are present in DyNetAge (p-value of 0.014).
Hence, it is encouraging that under MI-GRAAL’s
alignment strategy, a statistically significantly large
number of the predictions are found in independent
sources of aging-related data. Of 87 human aging-
related genes predicted under IsoRankN’s alignment
strategy, only one is present in ExpressionAge and
only 11 are present in DyNetAge. None of these two
overlaps under IsoRankN’s alignment strategy is sta-
tistically significant. Yet, the existence of some overlap
is still encouraging, since 1) IsoRankN, a state-of-the-art
method for multiple GNA, has been used to produce
the predictions, 2) the overlap could be low due to
the noisiness of all aging-related data sets (including
not just the predicted set but also ExpressionAge and
DyNetAge), and 3) statistically non-significant results
may still be biologically significant [51], [52]. Note
that we further investigate topological and functional
properties of the novel human predictions in Section
4.3, in order to validate them.

TABLE 4
MI-GRAAL’s vs. IsoRankN’s alignment strategy with

respect to known aging knowledge (in terms of
precision, recall, and F-score) under: 1) MI-GRAAL’s

cost function when using topology only, 2)
MI-GRAAL’s cost function when using topology and
sequence, 3) IsoRankN’s cost function when using

topology only, and 4) IsoRankN’s cost function when
using topology and sequence.

Aligners Precision Recall F-score

1 MI-MI-T vs. 6.3% vs. 5.2% vs. 5.7% vs.
MI-Iso-T 48.4% 7.9% 13.5%

2 MI-MI-TS vs. 11.1% vs. 7.3% vs. 8.8% vs.
MI-Iso-TS 52.9% 18.4% 27.3%

3 Iso-MI-T vs. 13.2% vs. 7.5% vs. 9.6% vs.
Iso-Iso-T 47.6% 1.0% 2.0%

4 Iso-MI-TS vs. 9.8% vs. 2.9% vs. 4.5% vs.
Iso-Iso-TS 50.0% 0.6% 1.2%

4.2.4 Aging through GNA: summary and significance

First, we compare the two cost functions under same
alignment strategy. MI-GRAAL’s cost function is over-
all superior over that of IsoRankN independent on
the alignment strategy, both when extracting known
and predicting new aging-related knowledge, espe-
cially when using both topology and sequence in
the cost function. Hence, consistent to our evaluation
results (Section 4.1.3), we again recommend using MI-
GRAAL’s cost function under both alignment strate-
gies, and we recommend using both topology and
sequence information in MI-GRAAL’s cost function,
especially under IsoRankN’s alignment strategy.

Second, we compare the two alignment strategies
under same cost function. IsoRankN’s alignment strat-
egy is superior under MI-GRAAL’s cost function,
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(A) (B) (C)

Fig. 4. Performance of different cost functions under IsoRankN’s alignment strategy in the context of aging. (A)
The number of clusters that are statistically significantly enriched in known aging-related genes. (B) The number
of proteins in the statistically significantly enriched clusters, broken down into known aging-related genes and
genes that are currently not associated with aging. (C) The number of novel aging-related genes predicted by
each aligner in each of the species (yeast (Y), fly (F), worm (W), and human (H)) from the statistically significant
clusters; only predictions that are currently not associated with aging are shown.

while MI-GRAAL’s alignment strategy is superior
under IsoRank’s cost function. The highest prediction
accuracy is achieved by MI-Iso-TS. Thus, if one’s goal
is to increase the prediction accuracy, we recommend
using this aligner. If instead one’s goal is to increase
topological similarity between networks while still
producing statistically significant aging-related pre-
dictions, we recommend using MI-GRAAL’s align-
ment strategy. MI-GRAAL’s strategy is also superior
with respect to the overlap of novel predictions with
independent existing aging-related knowledge.

We produce new human aging-related knowl-
edge via network alignment, complementing current
knowledge obtained mainly via sequence alignment.

TABLE 5
MI-GRAAL’s vs. IsoRankN’s alignment strategy with
respect to new aging-related knowledge predicted

under: 1) MI-GRAAL’s cost function when using
topology only, 2) MI-GRAAL’s cost function when
using topology and sequence, 3) IsoRankN’s cost

function when using topology only, and 4) IsoRankN’s
cost function when using topology and sequence. The

table lists the number of predictions (“N”) for each
aligner, the size of the overlap between predictions of

two given aligners (“O”), and p-value of the overlap
(“p”). “N/A” means that p-value could not be computed

due to no overlap.

Aligners N O p

1 MI-MI-T vs. MI-Iso-T 747 vs. 80 9 0.005
2 MI-MI-TS vs. MI-Iso-TS 558 vs. 157 2 0.951
4 Iso-MI-T vs. Iso-Iso-T 475 vs. 11 0 N/A
4 Iso-MI-TS vs. Iso-Iso-TS 259 vs. 6 0 N/A

4.3 Validation of novel aging-related predictions

Next, we aim to validate our novel aging-related
predictions in human by studying their topological
and functional properties, in hope to link the prop-
erties to current knowledge about aging (Sections

4.3.1–4.3.7). For this purpose, we denote each of the
eight sets of novel predictions in human produced
by one of the eight aligners as Novel-”aligner”. For
example, Novel-MI-Iso-TS, would correspond to the
set of novel human predictions by MI-Iso-TS. Also, we
denote the set of all predictions in human (the union
over all aligners) as Novel-All. Finally, we denote by
Complement the set of all genes from the human PPI
network minus any gene from Novel-All or GenAge.
That is, Complement contains what can be consid-
ered the least likely aging-related candidates. We use
Complement as a negative control data in the fol-
lowing sections, in hope that properties of our novel
predictions will be significantly similar to properties
of known aging-related genes, whereas they will be
significantly dissimilar to properties of genes from
Complement. Indeed, this is exactly what we observe.

4.3.1 Prediction overlap with the “ground truth” data

To validate our novel predictions (Novel-All), we first
compute their overlap with each of ExpressionAge
and DyNetAge (Section 3.5.1). Since the novel pre-
dictions are disjoint with GenAge, to compute the
overlaps fairly, here we exclude genes from Expres-
sionAge and DyNetAge that are also in GenAge. It
is highly encouraging that Novel-All overlaps signifi-
cantly with DyNetAge (with 70 genes in the overlap;
p-value of 1.83 × 10−3) and marginally significantly
with ExpressionAge (with 36 genes in the overlap; p-
value of 0.08), whereas its overlap with Complement
is non-significant (p-value of above 0.5).

4.3.2 Topological properties of our predictions

Since it has been argued that aging-related genes
play a central role in the network [53], we evaluate
topological positions of our novel predictions in the
human PPI network with respect to seven centrality
measures (Section 3.5.2). We hope that topological
positions of our predictions are significantly different
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that those of genes in Complement, whereas they
are similar to topological positions of known aging-
related genes (Section 3.5.2). And this is exactly what
we observe (Fig. 5 and Supplementary Table S1).

Fig. 5. GDC distribution of genes in Novel-All, Ex-
pressionAge, DyNetAge, GenAge, and Complement.
Complement is significantly less central compared to
all other data sets, including Novel-All, whereas Novel-
all behaves similarly as the three known aging-related
data sets. Similar trends are observed for other cen-
tralities as well (Supplementary Table S1).

4.3.3 Functional properties of our predictions

We compute enrichment of our novel predictions in
biological process GO terms (Section 3.5.3), in hope
that these GO terms are significantly similar to those
enriched in known aging-related genes, while they are
dissimilar to those enriched in Complement. And this
is exactly what we observe (Section 4.3.4). Supplemen-
tary Table S2 summarizes the number of GO terms
enriched in each of the data sets.

4.3.4 Functional overlap with the “ground truth” data

Indeed, we observe high overlap between GO terms
enriched in our novel predictions and those enriched
in known aging-related data sets, whereas their over-
lap with GO terms enriched in Complement is ex-
tremely low (Fig. 6 (A)), all of which validates our
predictions. When we focus on GO terms based on
any evidence code, GO terms of Novel-All signifi-
cantly overlap with GO terms of DyNetAge (p-value
of 4.23 × 10−4); it is highly encouraging that GO
terms enriched in the aging-related predictions from
two different network-based approaches overlap sig-
nificantly. Also, 5 GO terms overlap between Novel-
All and ExpressionAge, and 12 GO terms overlap
between Novel-All and SequenceAge (Fig. 6 (A)), al-
though these overlaps are not statistically significant.

When we focus on the novel predictions by MI-Iso-
TS (the best aligner in the context aging with respect
to F-score; Table 3), it is highly encouraging that
GO terms enriched in this set significantly overlap
with GenAge (p-value of 0.02), as the two sets are
completely disjoint. Furthermore, we observe signifi-
cant GO term overlaps between Novel-MI-MI-T and
ExpressionAge (p-value of 2.89×10−3), Novel-MI-MI-
T and DyNetAge (p-value of 0.03), Novel-MI-MI-TS

and DyNetAge (p-value of 4.25 × 10−5), Novel-Iso-
MI-TS and DyNetAge (p-value of 2.32 × 10−4), and
Novel-Iso-MI-TS and GenAge (p-value of 0.02).

When we focus on GO data based on experi-
mental evidence codes only, the number of enriched
GO terms is significantly reduced for each data set
(Supplementary Table S2). Therefore, GO overlaps
between the data sets are expected to reduce as well.
Yet, we still observe some (marginally) significant
overlaps: between Novel-MI-MI-TS and DyNetAge (p-
value of 9.65 × 10−3) and between Novel-All and
DyNetAge (p-value of 0.07).

Importantly, none of our novel prediction sets sig-
nificantly overlap with Complement.

(A) (B)

Fig. 6. (A) GO term overlap between Novel-All,
GenAge, and Complement. Trends are similar for
DyNetAge and ExpressionAge. (B) Our novel predic-
tion CDC25B and its induced neighborhood in the
human network. The neighbors in dark and light blue
are from GenAge and ExpressionAge, respectively.

4.3.5 Disease-related properties of our predictions

We compute enrichment of our novel predictions in
DO terms as well to further investigate whether the
enriched diseases have any connection to aging. We
find that this is the case. Mental retardation, enriched in
Novel-All (p-value of 0.03), has been linked to aging
(PubMed ID (PMID): 15823058). Mental retardation
is also enriched in Novel-MI-MI-T (p-value of 0.04).
Furthermore, brain tumor is enriched in MI-MI-T (p-
value of 0.04), prostate cancer is enriched in Iso-MI-TS
(p-value of 0.02), and cancer is enriched in MI-Iso-TS
(p-value of 0.03). Note that tumors and cancers are
known to be linked to aging (PMID: 17942417).

4.3.6 Disease overlap with the “ground-truth” data

It is encouraging that DO terms enriched in our
novel predictions overlap with those enriched in
known aging-related data sets. Pancreas disease is
enriched in both Novel-MI-MI-T and GenAge. This
disease is associated with aging because telomere
shortening, an important risk factor for this disease
(PMID: 23093543), is directly linked to aging (PMID:
24246679). Prostate cancer is enriched in both Novel-
Iso-MI-T and GenAge, while cancers are known to
be linked with aging (PMID: 17942417). For the same
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reason, it is encouraging that cancer is enriched in
both Novel-MI-Iso-TS and GenAge. Kidney disease is
enriched in both Novel-MI-Iso-T and GenAge, while
aging has been found to be a vital risk factor for
this disease (PMID: 15888561). We note that very few
DO terms are enriched in our novel predictions, and
therefore, in most cases, statistically it makes no sense
to compute the significance of the overlaps.

4.3.7 Literature validation of our predictions
We aim to manually validate our top-scoring novel
predictions in the literature. After ranking all of the
predictions (Section 3.5.7), there is a single top-scoring
gene, but there are already 33 second top-scoring
genes that are tied, which might be too many for
manual literature search. In this case, we give priority
to a gene identified by the best aligner in terms of
F-score (Table 3) over a tied gene identified by a
different aligner. This results in the total of 22 novel
predictions with top two confidence scores, which
we then attempt to link to aging in the literature.
We successfully find aging-related evidence for 20
(91%) of the 22 genes (Table 6). As an illustration, we
describe the aging-related evidence for several of the
20 genes, as follows. For example, KLHDC5, TANK,
and TMPRSS3 have been linked to Alzheimer’s dis-
ease (PMID:21705112,PMID: 9300664), ATP5B, MVK,
and MYOD1 have been linked to Hutchinson-Gilfold
progeria syndrome (PMID:21346760), and DSC3 has
been linked to Parkinson disease (PMID: 23184149),
whereas all of these diseases have been linked to
aging. For the remaining predictions, see Table 6.

TABLE 6
PubMed ID (PMID) evidence of 20 of our predictions.

Gene PMID Gene PMID

RGPD5 [54] DSC3 23184149
AP2B1, MRPL4, ATPAF1 12783983
STON2, TAC3, 18832152 CALM2 22719074
TNS1, ZBTB8A CDKN2D 11103932

KLHDC5, TANK 21705112 FANCC 23303816
ATP5B, MVK, MYOD1 21346760 LRP8 19519777

JUP 18582489 TMPRSS3 9300664

4.3.8 Novel predictions: summary and significance
We have validated our novel predictions in a number
of ways, demonstrating that they share topological
and functional properties with known aging-related
genes, whereas they differ from unlikely aging-related
candidates. We finalize the analysis by illustrating the
interconnectedness of one of our novel predictions
in human PPI network with other genes, many of
which are known aging-related genes (Fig. 6 (B)),
which further validates potential involvement of this
prediction in an aging-associated biological pathway.

5 CONCLUSIONS

We comprehensively evaluate combinations of cost
functions and alignment strategies of two state-of-the-

art GNA methods. The existing combination of MI-
GRAAL’s cost function and its alignment strategy re-
mains superior for pairwise GNA. But our new combi-
nation of MI-GRAAL’s cost function and IsoRankN’s
alignment strategy beats the existing combination of
IsoRankN’s cost function and its alignment strategy,
which has been state-of-the-art for multiple GNA.
Thus, we propose it as a new superior method.

We show that GNA can align with statistically sig-
nificantly high accuracy known aging-related network
parts across species. Thus, we transfer known aging-
related knowledge from well annotated species to
poorly annotated species (including human) between
aligned network regions, hence producing novel and
valuable aging-related knowledge. We validate our
novel predictions in a number of ways.
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