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A. Missing Proofs
Lemma 4.1. Let H ✓ [0, 1]X and D, D

0 be two distributions over X . Then 8h, h
0

2 H, |"D(h, h
0) � "D0(h, h

0)| 

d
H̃

(D, D
0), where H̃ := {sgn(|h(x) � h

0(x)| � t) | h, h
0
2 H, 0  t  1}.

Proof. By definition, for 8h, h
0
2 H, we have:

|"S(h, h
0) � "T (h, h

0)|  sup
h,h02H

|"S(h, h
0) � "T (h, h

0)|

= sup
h,h02H

��Ex⇠S [|h(x) � h
0(x)|] � Ex⇠T [|h(x) � h

0(x)|]
�� (6)

Since ||h||1  1, 8h 2 H, then 0  |h(x) � h
0(x)|  1, 8x 2 X , h, h

0
2 H. We now use Fubini’s theorem to bound��Ex⇠S [|h(x) � h

0(x)|] � Ex⇠T [|h(x) � h
0(x)|]

��:
��Ex⇠S [|h(x) � h

0(x)|]�Ex⇠T [|h(x) � h
0(x)|]

��

=
���
Z 1

0

⇣
Pr
S

(|h(x) � h
0(x)| > t) � Pr

T

(|h(x) � h
0(x)| > t)

⌘
dt

���



Z 1

0

���Pr
S

(|h(x) � h
0(x)| > t) � Pr

T

(|h(x) � h
0(x)| > t)

��� dt

 sup
t2[0,1]

���Pr
S

(|h(x) � h
0(x)| > t) � Pr

T

(|h(x) � h
0(x)| > t)

���

Now in view of (6) and the definition of H̃, we have:

sup
h,h02H

sup
t2[0,1]

���Pr
S

(|h(x) � h
0(x)| > t) � Pr

T

(|h(x) � h
0(x)| > t)

���

= sup
h̃2H̃

| Pr
S

(h̃(x) = 1) � Pr
T

(h̃(x) = 1)|

= sup
A2A

H̃

| Pr
S

(A) � Pr
T

(A)|

= d
H̃

(DS , DT )

Combining all the inequalities above finishes the proof. ⌅

Lemma 4.2. Let H ✓ [0, 1]X and D be any distribution over X . For any h, h
0
, h

00
2 H, we have "D(h, h

0)  "D(h, h
00) +

"D(h00
, h

0).

Proof.

"D(h, h
0) = Ex⇠D[|h(x) � h

0(x)|] = Ex⇠D[|h(x) � h
00(x) + h

00(x) � h
0(x)|]

 Ex⇠D[|h(x) � h
00(x)| + |h

00(x) � h
0(x)|] = "D(h, h

00) + "D(h00
, h

0)

⌅

Theorem 4.1. Let hDS , fSi and hDT , fT i be the source and target domains, respectively. For any function class H ✓ [0, 1]X ,
and 8h 2 H, the following inequality holds:

"T (h)  "S(h) + d
H̃

(DS , DT )

+ min{EDS [|fS � fT |],EDT [|fS � fT |]}.

Proof. On one hand, with Lemma 4.1 and Lemma 4.2, we have 8h 2 H:

"T (h) = "T (h, fT )  "S(h, fT ) + d
H̃

(DS , DT )  "S(h) + "S(fS , fT ) + d
H̃

(DS , DT ).
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On the other hand, by changing the order of two triangle inequalities, we also have:

"T (h) = "T (h, fT )  "T (h, fS) + "T (fS , fT )  "S(h) + "T (fS , fT ) + d
H̃

(DS , DT ).

Realize that by definition "S(fS , fT ) = EDS [|fS � fT |] and "T (fS , fT ) = EDT [|fS � fT |]. Combining the above two
inequalities completes the proof. ⌅
Lemma 4.3. Let H ✓ [0, 1]X , then for all � > 0, w.p. at least 1 � �, the following inequality holds for all h 2 H:
"S(h)  b"S(h) + 2RadS(H) + 3

p
log(2/�)/2n.

Proof. Consider the source domain DS . For 8h 2 H, define the loss function ` : X ! [0, 1] as `(x) := |h(x) � fS(x)|.
First, we know that RadS(H�fS) = RadS(H) where we slightly abuse the notation H�fS to mean the family of functions
{h � fS | 8h 2 H}:

RadS(H � fS) = E���


sup

h02H�fS

1

n

nX

i=1

�ih
0(xi)

�
= E���


sup
h2H

1

n

nX

i=1

�i(h(xi) � fS(xi))

�

= E���


sup
h2H

1

n

nX

i=1

�ih(xi)

�
+ E���


1

n

nX

i=1

�ifS(xi)

�

= RadS(H)

Observe that the function � : t ! |t| is 1-Lipschitz continuous, then by Ledoux-Talagrand’s contraction lemma, we can
conclude that

RadS(� � (H � fS))  RadS(H � fS) = RadS(H)

Using Lemma B.1 with the above arguments and realize that "S(h) = Ex⇠DS [|h(x) � fS(x)|] finishes the proof. ⌅

Lemma 4.4. Let H̃, D and bD be defined above, then for all � > 0, w.p. at least 1 � �, the following inequality holds for all
h 2 H̃: ED[Ih]  E bD[Ih] + 2RadS(H̃) + 3

p
log(2/�)/2n.

Proof. Note that Ih 2 {0, 1}, hence this lemma directly follows Lemma B.1. ⌅

Lemma 4.5. Let H̃, D, D
0 and bD, bD0 be defined above, then for 8� > 0, w.p. at least 1 � �, for 8h 2 H̃:

d
H̃

(D, D
0)  d

H̃
( bD, bD0) + 4RadS(H̃) + 6

p
log(4/�)/2n.

Proof. By the triangular inequality of d
H̃

(·, ·), we have:

d
H̃

(D, D
0)  d

H̃
(D, bD) + d

H̃
( bD, bD0) + d

H̃
( bD0

, D
0).

Now with Lemma 4.4, we know that with probability � 1 � �/2, we have:

d
H̃

(D, bD)  2RadS(H̃) + 3
p

log(4/�)/2n.

Similarly, with probability � 1 � �/2, the following inequality also holds:

d
H̃

(D0
, bD0)  2RadS(H̃) + 3

p
log(4/�)/2n.

A union bound to combine the above two inequalities then finishes the proof. ⌅
Theorem 4.2. Let hDS , fSi and hDT , fT i be the source and target domains, and let bDS , bDT be the empirical source and
target distributions constructed from sample S = {SS ,ST }, each of size n. Then for any H ✓ [0, 1]X and 8h 2 H:

"T (h)  b"S(h) + d
H̃

( bDS , bDT ) + 2RadS(H) + 4RadS(H̃)

+ min{EDS [|fS � fT |],EDT [|fS � fT |]}

+ O

⇣p
log(1/�)/n

⌘
,

where H̃ := {sgn(|h(x) � h
0(x)| � t)|h, h

0
2 H, t 2 [0, 1]}.
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Proof. By Theorem 4.1, the following inequality holds:

"T (h)  "S(h) + d
H̃

(DS , DT ) + min{EDS [|fS � fT |],EDT [|fS � fT |]}.

To get probabilistic bounds for both "S(h) and d
H̃

(DS , DT ), we apply Lemma 4.3 and Lemma 4.5, respectively. The final
step, again, is to use a union bound to combine all the inequalities above, which completes the proof. ⌅
Lemma 4.6. Let D

Z

S
and D

Z

T
be two distributions over Z and let D

Y

S
and D

Y

T
be the induced distributions over Y by

function h : Z 7! Y , then
dJS(D

Y

S
, D

Y

T
)  dJS(D

Z

S
, D

Z

T
). (3)

Proof. Let B be a uniform random variable taking value in {0, 1} and let the random variable YB with distribution D
Y

B

(resp. ZB with distribution D
Z

B
) be the mixture of D

Y

S
and D

Y

T
(resp. D

Z

S
and D

Z

T
) according to B. We know that:

DJS(D
Z

S
|| D

Z

T
) = I(B; ZB), and DJS(D

Y

S
|| D

Y

T
) = I(B; YB). (7)

Since D
Y

S
(resp. D

Y

T
) is induced by the function h : Z 7! Y from D

Z

S
(resp. D

Z

T
), by linearity, we also have D

Y

B
is induced

by h from D
Z

B
. Hence YB = h(ZB) and the following Markov chain holds:

B ! ZB ! YB .

Apply the data processing inequality (Lemma B.4), we have

DJS(D
Z

S
|| D

Z

T
) = I(B; ZB) � I(B; YB) = DJS(D

Y

S
|| D

Y

T
).

Taking square root on both sides of the above inequality completes the proof. ⌅
Lemma 4.7. Let Y = f(X) 2 {0, 1} where f(·) is the labeling function and Ŷ = h(g(X)) 2 {0, 1} be the prediction
function, then dJS(DY

, D
Ŷ ) 

p
"(h � g).

Proof.

dJS(D
Y

, D
Ŷ ) =

q
DJS(DY , DŶ )



q
||DY � DŶ ||1/2 (Lemma B.3)

=

r⇣
| Pr(Y = 0) � Pr(Ŷ = 0)| + | Pr(Y = 1) � Pr(Ŷ = 1)|

⌘
/2

=
q

| Pr(Y = 1) � Pr(Ŷ = 1)|

=
p

|EX [f(X)] � EX [h(g(X))]|



p
EX [|f(X) � h(g(X))|]

=
p

"(h � g)

⌅
Lemma 4.8. Suppose the Markov chain X

g

�! Z
h

�! Ŷ holds, then

dJS(D
Y

S
, D

Y

T
)  dJS(D

Z

S
, D

Z

T
) +

p
"S(h � g) +

p
"T (h � g).

Proof. Since X
g

�! Z
h

�! Ŷ forms a Markov chain, by Lemma 4.6, the following inequality holds:

dJS(D
Ŷ

S
, D

Ŷ

T
)  dJS(D

Z

S
, D

Z

T
).

On the other hand, since dJS(·, ·) is a distance metric, we also have:

dJS(D
Y

S
, D

Y

T
)  dJS(D

Y

S
, D

Ŷ

S
) + dJS(D

Ŷ

S
, D

Ŷ

T
) + dJS(D

Ŷ

T
, D

Y

T
)  dJS(D

Y

S
, D

Ŷ

S
) + dJS(D

Z

S
, D

Z

T
) + dJS(D

Ŷ

T
, D

Y

T
).

Applying Lemma 4.7 to both dJS(DY

S
, D

Ŷ

S
) and dJS(DŶ

T
, D

Y

T
) then finishes the proof. ⌅
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Theorem 4.3. Suppose the condition in Lemma 4.8 holds and dJS(DY

S
, D

Y

T
) � dJS(DZ

S
, D

Z

T
), then:

"S(h � g) + "T (h � g) �
1

2

�
dJS(D

Y

S
, D

Y

T
) � dJS(D

Z

S
, D

Z

T
)
�2

.

Proof. In view of the result in Theorem 4.8, applying the AM-GM inequality, we have:
p

"S(h � g) +
p

"T (h � g) 

p
2 ("S(h � g) + "T (h � g)).

Now since dJS(DY

S
, D

Y

T
) � dJS(DZ

S
, D

Z

T
), simple algebra shows

"S(h � g) + "T (h � g) �
1

2

�
dJS(D

Y

S
, D

Y

T
) � dJS(D

Z

S
, D

Z

T
)
�2

.

⌅

B. Technical Tools
The following lemma is particularly useful to provide data-dependent guarantees in terms of the empirical Rademacher
complexity:
Lemma B.1 (Bartlett & Mendelson (2002)). Let H ✓ [0, 1]X , then for 8� > 0, w.p.b. at least 1��, the following inequality
holds for 8h 2 H:

E[h(x)] 
1

n

nX

i=1

h(xi) + 2RadS(H) + 3

r
log(2/�)

2n
(8)

Ledoux-Talagrand’s contraction lemma is a useful technique in upper bounding the Rademacher complexity of function
compositions:
Lemma B.2 (Ledoux-Talagrand’s contraction lemma). Let � : R 7! R be a Lipschitz function with parameter L, i.e.,
8a, b 2 R, |�(a) � �(b)|  L|a � b|. Then,

RadS(� � H) = E���


sup
h2H

1

n

nX

i=1

�i�(h(xi))

�
 L E���


sup
h2H

1

n

nX

i=1

�ih(xi)

�
= L RadS(H),

where � � H := {� � h | h 2 H} is the class of composite functions.

Lin’s lemma gives an upper bound of the JS divergence between two distributions via the L1 distance (total variation
distance).
Lemma B.3 (Theorem. 3, (Lin, 1991)). Let D and D

0 be two distributions, then DJS(D, D
0) 

1
2 ||D � D

0
||1.

Lemma B.4 (Data processing inequality). Let X ! Z ! Y be a Markov chain, then I(X; Z) � I(X; Y ), where I(·; ·) is
the mutual information.

C. Additional Experiments
In order to further validate our claims, we artificially unbalance the label distribution on the source domain by removing
samples from the dataset. We perform two such modifications:

• Unbalanced digits In our first experiment, the source domain is MNIST, from which we randomly remove 70% of the
first five classes (corresponding to digits 0 through 4) while leaving the other classes untouched. The target domain is
the full USPS dataset.

• Unbalanced zeros and ones In our second experiment, the source domain is still MNIST. We remove 70% of the 0
class and all the classes above 2 entirely. We still target the USPS dataset, but also remove digits 2 to 9 in that dataset.

The results of the DANN domain adaptation algorithm on those tasks are plotted in Figure 4. They confirm the theoretical
and experimental findings from the main text. The effect is however enhanced due to a much larger discrepancy between the
label distributions (a fact predicted by our theory). Those plots are the mean across 5 seeds, the standard deviation over
those 5 runs is significantly lower than the observed trend.
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(a) Unbalanced digits (b) Unbalanced zeros and ones

Figure 4. Digit classification on the unbalanced MNIST to USPS domain adaptation tasks described above. The horizontal solid line
corresponds to the target domain test accuracy without adaptation. The green solid line is the target domain test accuracy under domain
adaptation with DANN. We also plot the least square fit (dashed line) of the DANN adaptation results to emphasize the negative slope.


