Nothing Special   »   [go: up one dir, main page]

×
Please click here if you are not redirected within a few seconds.
Accurately identifying the hysteresis model parameters may improve the control precision of giant magnetostrictive actuator output displacement. The single ...
In this paper, we present an improved hysteresis model for magnetostrictive actuators. To obtain optimal parameters of the model, we study two distinct hybrid ...
In this paper, we present an improved hysteresis model for magnetostrictive actuators. To obtain optimal parameters of the model, we study two distinct ...
This paper shows a hysteresis model of giant magnetostrictive actuator (GMA), and proposes a hybrid genetic algorithm (HGA) to identify the parameters of ...
Based on Jiles–Atherton theory and the quadratic law, a displacement model for giant magnetostrictive actuators (GMA) has been developed.
Wang, Huang W., Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators. Neurocomputing, 70 (2007) 749 ...
Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators · Engineering. Neurocomputing · 2007.
People also ask
Feb 13, 2019 · ... Google Scholar. Zheng, J.; et al.: Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators.
Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators. In this paper, we present an improved hysteresis ...
Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators, Neurocomputing, 2007, 70(4-6): pp.749-761. DOI ...