-
Notifications
You must be signed in to change notification settings - Fork 18
/
Detector.py
187 lines (152 loc) · 9.43 KB
/
Detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import sys
import cv2
import tarfile
import zipfile
import numpy as np
import tensorflow as tf
import six.moves.urllib as urllib
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from PIL import Image
python_path = os.path.abspath('TF_ObjectDetection')
sys.path.append(python_path)
python_path = os.path.abspath('TF_ObjectDetection/slim')
sys.path.append(python_path)
from object_detection.utils import ops as utils_ops
if tf.__version__ < '1.5.0':
raise ImportError('Please upgrade your tensorflow installation to v1.5.* or later!')
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
class Detector:
MODEL_NAME = 'ssd_mobilenet_v1_coco'
NUM_CLASSES = 1
PATH_TO_CKPT = os.path.join('TF_ObjectDetection', MODEL_NAME, 'frozen_inference_graph.pb')
PATH_TO_LABELS = os.path.join('TF_ObjectDetection', 'label_map.pbtxt')
fig = None
min_score_thresh = 0.25
def __init__(self):
if not os.path.isfile(self.PATH_TO_CKPT):
raise Exception('Model File not Found')
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(self.PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(self.PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes=self.NUM_CLASSES, use_display_name=True)
self.category_index = label_map_util.create_category_index(categories)
def run_inference_for_single_image(self, image):
with self.detection_graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
tensor_dict = {}
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
for key in ['num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks']:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(detection_masks,
detection_boxes,
image.shape[0],
image.shape[1])
detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict, feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
def test_detection(self):
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'data/detector_val'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, '000{}.png'.format(i)) for i in range(0, 3) ]
for image_path in TEST_IMAGE_PATHS:
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = np.asarray(Image.open(image_path).convert('RGB'), dtype=np.uint8).copy()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = self.run_inference_for_single_image(image_np)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array( image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
self.category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=2)
import matplotlib.image as mpimg
mpimg.imsave(image_path.split('/')[-1], image_np)
def detect(self, image_np, gt_box=None):
image = image_np.copy()
# image_np_expanded = np.expand_dims(image_np, axis=0)
output_dict = self.run_inference_for_single_image(image_np)
if gt_box is not None:
vis_util.draw_bounding_boxes_on_image_array( image,
np.array([gt_box]),
color='black',
thickness=4)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array( image,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
self.category_index,
min_score_thresh=self.min_score_thresh,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
skip_scores=False,
skip_labels=True,
line_thickness=4)
# cv2.imshow('Simulation', image)
# cv2.waitKey(10)
bboxes = output_dict['detection_boxes']
classes = output_dict['detection_classes']
scores = output_dict['detection_scores']
bboxes = [bbox for bbox, _ in sorted(zip(bboxes, scores), key=lambda pair: pair[1], reverse=True)]
classes = [clss for clss, _ in sorted(zip(classes, scores), key=lambda pair: pair[1], reverse=True)]
scores = sorted(scores, key=lambda x: x, reverse=True)
im_height, im_width = image_np.shape[0:2]
for i in range(len(bboxes)):
if scores is None or scores[i] > self.min_score_thresh:
if classes[i] in self.category_index.keys():
class_name = self.category_index[classes[i]]['name']
if class_name=='car':
box = tuple(bboxes[i].tolist())
ymin, xmin, ymax, xmax = box
left = xmin * im_width
right = xmax * im_width
top = ymin * im_height
bottom = ymax * im_height
POS_X = (left + right - im_width)/2.0
POS_Y = (im_height - top - bottom)/2.0
WIDTH = right - left
HEIGHT = bottom - top
return (POS_X, POS_Y, WIDTH, HEIGHT)
return None
# if __name__=='__main__':
# model = Detector()
# model.test_detection()