Nothing Special   »   [go: up one dir, main page]

Skip to content

guanghelee/iclr19-robust-locally-linear-nets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Towards Robust, Locally Linear Deep Networks:

This repository is for the paper

Package version:

  • PyTorch0.4.1
  • python3.6.1

Reproducing the MNIST experiment:

  • Please execute the shell files (gamma100_fc.sh) to reproduce the experiment on MNIST dataset with gamma=100. The results will be in the folder fc_log/

  • parse_log.py is a utility script. After you run all the models using gamma100_fc.sh. Use the following comment:

    • ls fc_log > fc_log.list
    • cd fc_log
    • python ../parse_log.py --file-list ../fc_log.list
  • To inspect the best model in terms of the median of L2 margin given each validation accuracy, please look into the log file to see the testing scores of the model.

Other experiments:

  • Unfortunately we don't plan to release the codes for other experiments.

Citation:

If you find this repo useful for your research, please cite the paper

@inproceedings{
  lee2018towards,
  title={Towards Robust, Locally Linear Deep Networks},
  author={Guang-He Lee and David Alvarez-Melis and Tommi S. Jaakkola},
  booktitle={International Conference on Learning Representations},
  year={2019},
  url={https://openreview.net/forum?id=SylCrnCcFX},
}

About

"Towards Robust, Locally Linear Deep Networks" (ICLR 2019)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published