-
Notifications
You must be signed in to change notification settings - Fork 6
/
multivariate_convolutional.py
276 lines (209 loc) · 9.49 KB
/
multivariate_convolutional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
from __future__ import print_function
import sys
import json
import math
from processing import *
import pandas as pd
import matplotlib.pylab as plt
from sklearn.metrics import mean_squared_error
import time
seed=7
np.random.seed(seed) # for reproducibility
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.recurrent import LSTM, GRU
from keras.layers import Conv1D, MaxPooling1D, AtrousConvolution1D, RepeatVector
from keras.callbacks import CSVLogger, EarlyStopping, ModelCheckpoint,ReduceLROnPlateau, TensorBoard
from hyperbolic_nonlinearities import *
from keras.layers.wrappers import Bidirectional
from keras import regularizers
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import *
from keras.optimizers import RMSprop, Adam, SGD, Nadam
from keras.initializers import *
start_time = time.time()
batch_size = 128
nb_epoch = 420
patience = 50
look_back = 7
EMB_SIZE = 5 #numero de features
def evaluate_model(model, dataset, dadosp, name, n_layers, ep):
X_train, X_test, Y_train, Y_test = dataset
X_trainp, X_testp, Y_trainp, Y_testp = dadosp
csv_logger = CSVLogger('output/%d_layers/%s.csv' % (n_layers, name))
es = EarlyStopping(monitor='loss', patience=patience)
#mcp = ModelCheckpoint('output/mnist_adaptative_%dx800/%s.checkpoint' % (n_layers, name), save_weights_only=True)
#tb = TensorBoard(log_dir='output/mnist_adaptative_%dx800' % n_layers, histogram_freq=1, write_graph=False, write_images=False)
#sgd = SGD(lr=0.01, momentum=0.9, nesterov=True)
#optimizer = sgd
optimizer = "adam"
#optimizer = "adadelta"
model.compile(loss='mean_squared_error', optimizer=optimizer)
# reshape input to be [samples, time steps, features]
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], EMB_SIZE))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], EMB_SIZE))
#X_train = np.expand_dims(X_train, axis=2)
#X_test = np.expand_dims(X_test, axis=2)
history = model.fit(X_train, Y_train, batch_size=batch_size, epochs=ep, verbose=0, validation_split=0.1, callbacks=[csv_logger,es])
#trainScore = model.evaluate(X_train, Y_train, verbose=0)
#print('Train Score: %f MSE (%f RMSE)' % (trainScore, math.sqrt(trainScore)))
#testScore = model.evaluate(X_test, Y_test, verbose=0)
#print('Test Score: %f MSE (%f RMSE)' % (testScore, math.sqrt(testScore)))
# make predictions (scaled)
trainPredict = model.predict(X_train)
testPredict = model.predict(X_test)
# invert predictions (back to original)
params = []
for xt in X_testp:
xt = np.array(xt[:,3]) # close
mean_ = xt.mean()
scale_ = xt.std()
params.append([mean_, scale_])
new_predicted = []
for pred, par in zip(testPredict, params):
a = pred*par[1]
a += par[0]
new_predicted.append(a)
params2 = []
for xt in X_trainp:
xt = np.array(xt[:,3]) # close
mean_ = xt.mean()
scale_ = xt.std()
params2.append([mean_, scale_])
new_train_predicted= []
for pred, par in zip(trainPredict, params2):
a = pred*par[1]
a += par[0]
new_train_predicted.append(a)
# calculate root mean squared error
trainScore = mean_squared_error(new_train_predicted, Y_trainp)
#print('Train Score: %f RMSE' % (trainScore))
testScore = mean_squared_error(new_predicted, Y_testp)
#print('Test Score: %f RMSE' % (testScore))
epochs = len(history.epoch)
# calculate root mean squared error
trainScore = mean_squared_error(new_train_predicted, Y_trainp)
#trainScore = mean_squared_error(trainPredict, Y_train)
#print('Train Score: %f RMSE' % (trainScore))
testScore = mean_squared_error(new_predicted, Y_testp)
#testScore = mean_squared_error(testPredict, Y_test)
#print('Test Score: %f RMSE' % (testScore))
epochs = len(history.epoch)
# fig = plt.figure()
# plt.plot(Y_test[:150], color='black') # BLUE - trained RESULT
# plt.plot(testPredict[:150], color='blue') # RED - trained PREDICTION
#plt.plot(Y_testp[:150], color='green') # GREEN - actual RESULT
#plt.plot(new_predicted[:150], color='red') # ORANGE - restored PREDICTION
#plt.show()
return trainScore, testScore, epochs, optimizer
def __main__(argv):
n_layers = int(argv[0])
print(n_layers,'layers')
#nonlinearities = ['aabh', 'abh', 'ah', 'sigmoid', 'relu', 'tanh']
nonlinearities = ['sigmoid', 'relu', 'tanh']
#nonlinearities = ['relu']
with open("output/%d_layers/compare.csv" % n_layers, "a") as fp:
fp.write("-MINIDOLAR/Convolutional-Multi NN\n")
hals = []
#data_original = pd.read_csv('./data/AAPL1216.csv')[::-1]
#data_original = pd.read_csv('ibov_google_15jun2017_1min_15d.csv', sep = ',', engine='python', skiprows=8, decimal='.',header=None)
# openp = data_original.ix[:, 4].tolist()
# highp = data_original.ix[:, 2].tolist()
# lowp = data_original.ix[:, 3].tolist()
# closep = data_original.ix[:, 1].tolist()
# volumep = data_original.ix[:, 5].tolist()
data_original = pd.read_csv('minidolar/wdo.csv', sep = '|', engine='python', decimal='.',header=0)
averagep = data_original.ix[:, 1].tolist()
openp = data_original.ix[:, 2].tolist()
highp = data_original.ix[:, 3].tolist()
lowp = data_original.ix[:, 4].tolist()
closep = data_original.ix[:, 5].tolist()
volumep = data_original.ix[:, 6].tolist()
# data_chng = data_original.ix[:, 'Adj Close'].pct_change().dropna().tolist()
WINDOW = 30
TRAIN_SIZE=WINDOW
STEP = 1
FORECAST = 1
X, Y = [], []
for i in range(0, len(data_original), STEP):
try:
#a = averagep[i:i+WINDOW+FORECAST]
o = openp[i:i+WINDOW]
h = highp[i:i+WINDOW]
l = lowp[i:i+WINDOW]
c = closep[i:i+WINDOW]
v = volumep[i:i+WINDOW]
forecasted_c = closep[i+WINDOW+FORECAST]
#scaling FORECASTED close
forecasted_c = (forecasted_c - np.mean(c)) / np.std(c)
#scaling WINDOW data
#a = (np.array(a) - np.mean(a)) / np.std(a)
o = (np.array(o) - np.mean(o)) / np.std(o)
h = (np.array(h) - np.mean(h)) / np.std(h)
l = (np.array(l) - np.mean(l)) / np.std(l)
c = (np.array(c) - np.mean(c)) / np.std(c)
v = (np.array(v) - np.mean(v)) / np.std(v)
#timeseries = np.array(c.append(forecasted_c))
#x_i = np.column_stack((a[:-1], o[:-1], h[:-1], l[:-1], c[:-1], v[:-1]))
x_i = np.column_stack((o, h, l, c, v))
y_i = forecasted_c
except Exception as e:
break
X.append(x_i)
Y.append(y_i)
X, Y = np.array(X), np.array(Y)
X_train, X_test, Y_train, Y_test = create_Xt_Yt(X, Y, 0.5)
dados = X_train, X_test, Y_train, Y_test
Xp, Yp = [], []
for i in range(0, len(data_original), STEP):
try:
#a = averagep[i:i+WINDOW+FORECAST]
o = openp[i:i+WINDOW+FORECAST]
h = highp[i:i+WINDOW+FORECAST]
l = lowp[i:i+WINDOW+FORECAST]
c = closep[i:i+WINDOW+FORECAST]
v = volumep[i:i+WINDOW+FORECAST]
x_i = closep[i:i+WINDOW]
y_i = closep[i+WINDOW+FORECAST]
timeseries = np.array(c)
#x_i = np.column_stack((a[:-1], o[:-1], h[:-1], l[:-1], c[:-1], v[:-1]))
x_i = np.column_stack((o[:-1], h[:-1], l[:-1], c[:-1], v[:-1]))
y_i = timeseries[-1]
except Exception as e:
break
Xp.append(x_i)
Yp.append(y_i)
Xp, Yp = np.array(Xp), np.array(Yp)
X_trainp, X_testp, Y_trainp, Y_testp = create_Xt_Yt(Xp, Yp, percentage=0.5)
dadosp = X_trainp, X_testp, Y_trainp, Y_testp
for f in range(23,24):
#name=Hyperbolic(rho=0.9)
name='relu'
model = Sequential()
#model.add(Dense(500, input_shape = (TRAIN_SIZE, )))
#model.add(Activation(name))
model.add(Conv1D(input_shape = (TRAIN_SIZE, EMB_SIZE),filters=15,kernel_size=f,activation=name,padding='same',strides=1))
#model.add(MaxPooling1D(pool_size=2))
for l in range(n_layers):
model.add(Conv1D(input_shape = (TRAIN_SIZE, EMB_SIZE),filters=15,kernel_size=f,activation=name,padding='same',strides=1))
#model.add(MaxPooling1D(pool_size=1))
model.add(Dropout(0.5))
model.add(Flatten())
#model.add(Dense(5))
#model.add(Dropout(0.25))
#model.add(Activation(name))
model.add(Dense(1))
model.add(Activation('linear'))
#model.summary()
trainScore, testScore, epochs, optimizer = evaluate_model(model, dados, dadosp, name, n_layers,nb_epoch)
# if(testScore_aux > testScore):
# testScore_aux=testScore
# f_aux = f
elapsed_time = (time.time() - start_time)
with open("output/%d_layers/compare.csv" % n_layers, "a") as fp:
fp.write("%i,%s,%f,%f,%d,%s --%s seconds\n" % (f, name, trainScore, testScore, epochs, optimizer, elapsed_time))
#fp.write("%s,%f,%f,%d,%s --%s seconds\n" % (name, trainScore, testScore, epochs, optimizer, elapsed_time))
model = None
#print("melhor parametro: %i" % f_aux)
if __name__ == "__main__":
__main__(sys.argv[1:])