
Tutorial for the cl-cairo2 package

Tamás K Papp

May 28, 2009

1 Introduction

Cairo is a 2D graphics library with support for multiple output devices. The cl-cairo2

package provides Common Lisp bindings for the Cairo API.1

cl-cairo2 is written with the following principles in mind:

CFFI bindings are generated by SWIG. This ensures that API changes are caught
easily and makes it easier to follow them. The bindings to C functions are not ex-
ported directly.

It attempts to make the interface more Lisp-like. The Cairo API is written in C,
which has no garbage collection or condition handling, and has little support for so-
phisticated dynamic data structures. However, the Lisp user should not worry about
reference counting and pointer arithmetic. Instead of merely providing the C wrappers,
cl-cairo2 aims to provide an interface conforming to the style of Lisp better.

Condition handling. In the Cairo API, an error is signaled by changing the state of the
object, which the user is supposed to query periodically. The functions in cl-cairo2 do
this automatically, and use Common Lisp’s powerful condition facility to signal errors.2

This tutorial introduces cl-cairo2, but is not an introduction to Cairo itself. If you are
not familiar with Cairo, it is recommended that your read the Cairo Tutorial for Python
(and other) Programmers.

1Alternatives are cl-cairo, written by Lars Nostdal and others (this project appears to be dormant), and
Christian Haselbach’s cffi-cairo.

2This feature is not fully developed yet: currently a warning is signalled for all errors. The framework is
in place, I just need to decide which errors require user intervention, etc.

1

http://cairographics.org/
http://www.tortall.net/mu/wiki/CairoTutorial
http://www.tortall.net/mu/wiki/CairoTutorial
http://www.cliki.net/cl-cairo
http://www.cliki.net/cffi-cairo

cl-cairo2 tutorial Tamás K Papp

2 Installation and loading

cl-cairo2 uses ASDF. Please refer to the ASDF and ASDF-Install manuals on how to install
packages. You need to have the latest Cairo API installed. On Debian systems, you just
need to install the libcairo2 package. You don’t need the header files or SWIG unless you
plan to regenate the SWIG bindings.

Once installed, you can load cl-cairo2 with

(asdf:operate ’asdf:load-op :cl-cairo2)

3 Getting started

Most Cairo drawing operations are performed on a context. Think of the context as a
combination of a canvas which remembers pen strokes (the current path), color, line width,
line style, and other, more complicated settings that determine what gets drawn where.
When you build a path (which you want to fill with a color/pattern, stroke with a given line
style, or even save), all of this happens in a context.

All cl-cairo2 functions take the context as their (optional) last argument. It defaults
to *context*. The macro with-context will wrap your code in a (let ((*context* ...)

)...) with the given context. When you are writing your own functions that implement
more complex operations, I recommend that you make context as an optional or keyword
argument, with *context* as its default value.

Contexts are created from surfaces — which, at this point, should be thought of as the
bare canvas itself (think of PDF, PostScript, of PNG files). All Cairo objects, including
contexts and surfaces, are implemented in CLOS wrappers, and can be closed (destroyed)
with destroy.

When the context is created from a surface, the reference count (in the internals of
Cairo) of the latter is incremented. You can immediately destroy the surface: it will not
be destroyed (ie the file will not be closed) until you destroy the context.3 The following
code draws a white diagonal line on a blue background, using a Postscript file – the result
is shown in Figure 1.

(defparameter *surface* (create-pdf-surface "example.pdf" 200 100))

(setf *context* (create-context *surface*))

(destroy *surface*)

;; clear the whole canvas with blue

3The file will also be closed if the wrapper object is garbage collected. However, you should not rely on
this, as calling the garbage collector is not portable.

2

http://www.cliki.net/asdf
http://www.cliki.net/ASDF-Install

cl-cairo2 tutorial Tamás K Papp

(set-source-rgb 0.2 0.2 1)

(paint)

;; draw a white diagonal line

(move-to 200 0)

(line-to 0 100)

(set-source-rgb 1 1 1)

(set-line-width 5)

(stroke)

;; destroy context, this also destroys the surface and closes the file

(destroy *context*)

Figure 1: white diagonal line on a blue background

Unless you need the surface itself for something else, you should use the create-*-

context convenience commands provided by cl-cairo2. For example, the first three lines of
the code above would be replaced by

(defparameter *context* (create-ps-context "example.ps" 200 100))

Unlike the original Cairo API, surfaces and contexts in cl-cairo2 remember their width
and height. Use the generic functions get-width and get-height to extract these.

When you want to write the output into a bitmap file (for example, in PNG format), you
first need to create an image surface, then write this to the bitmap file when you are done.
The macro with-png-file will take care of these details: use it like

(with-png-file ("example.png" :rgb24 200 100)

;; drawing commands

...)

This example above highlights another feature of cl-cairo2: constants (such as the for-
mat specifier rgb24) are exported as simple names from the cl-cairo2 package. Internal
functions in the package map these to the enum constants used by Cairo. cl-cairo2 uses

3

cl-cairo2 tutorial Tamás K Papp

lookup tables (assoc lists) for this purpose, which are defined in tables.lisp. Cairo con-
stants CAIRO PROPERTY SOMETHING usually map to the Lisp keyword symbol :property-
something, and can only be used in setting or querying PROPERTY. For example, CAIRO_FORMAT_RGB24
is mapped to :format-rgb24, and using it for some other property will create an error.

Likewise, names of the Lisp function are easy to deduce from the name of the C function
in the Cairo API: just drop the cairo_ prefix and convert all underscores (_) to dashes (-).
The exceptions to this rule (and the explanations) are given in Table 3.

Cairo API name (explanation) cl-cairo2 name
cairo_fill (would conflict with cl:fill) fill-path

cairo_identity_matrix (would conflict with matrix algebra
packages)

reset-trans-matrix

cairo_matrix_init_identity use (make-trans-matrix)

cairo_matrix_transform_distance transform-distance

cairo_matrix_transform_point transform-point

cairo_matrix_* trans-matrix-*

4 Implementation notes

4.1 General

The package contains some helper functions, most notably deg-to-rad, which converts
degrees to radians. Cairo functions use the latter.

4.2 Surfaces

See the beginning of surface.lisp for helper macros used internally to define wrappers for
the SWIG-generated CFFI interface (neither the interface not these macros are exported).
with-alive-surface checks if the pointer for a surface object is nil, and check-surface-

pointer-status queries the status of the surface after executing body. with-surface is a
combination of the two, and new-surface-with-check makes a new surface object from a
pointer, checking its status first.

Currently, only Postscript, PDF, SVG and image surfaces (which can be written to PNG
files) are supported.

Drawing in X11 windows is implemented using the x11-context class — see Section 4.7
for more information. You need to load the cl-cairo2-x11 package for that.

4

cl-cairo2 tutorial Tamás K Papp

4.3 Contexts

Contexts are represented as the class context, which currently only has one slot, a pointer
to the context. When contexts are destroyed, this is set to nil.

The macro with-context-pointer is similar to with-surface above (it executes the
body with pointer pointing to the object and then checks error status). The functions define
-with-default-context defines a function acting on a context given a list of arguments and
exports this function. define-flexible is similar, but allows a more flexible function body.

Functions that are not implemented yet include
• cairo-get-target

• push-group-with-content

• get-group-target

• set-source, set-source-surface, get-source
• mask, mask-surface

I doubt that Lisp users need get/set-user-data or get-reference-count. Let me know
if you do.

Since version 0.2.3, you can use colors from cl-colors with the generic function set-

source-color, for example,

(set-source-color +darkolivegreen+)

4.4 Paths

Almost all drawing operations of Cairo rely on the construction of paths. While basic paths
can be constucted in a context, paths can be saved, modified and reused independently. At
the moment, cl-cairo2 does not support these path operations:

• copy-path

• copy-path-flat

• path-destroy

• append-path

This is because I decided to follow the recommendation of relevant section of the Cairo API
Manual, and implement paths and related manipulators in a way that doesn’t require the
user to traverse structures of C pointers. This is not done yet.

glyph-path (see Section 4.5 for discussion about glyphs) is not implemented either.

4.5 Text

Text operations are very basic at the moment (refer to text.lisp for an enumeration of
what is missing). You can select font face and size using commands like

5

http://www.cliki.net/cl-colors
http://www.cairographics.org/manual/bindings-path.html

cl-cairo2 tutorial Tamás K Papp

(select-font-face "Arial" :italic :bold)

(select-font-size 12)

and use (show-text "hello world") to draw it. You can control text placement by using
text-extents and recalculating the position — see example.lisp for examples (in Sec-
tion 5). Note that Cairo functions accept text in UTF-8 format: you should convert your
strings to UTF-8 if you plan to use non-ASCII characters.

The long-term goal is to use CLOS for font selection, following the recommendations here.
Also, proper handling of glyphs would be a nice thing, but would require other libraries (eg
Pango) for converting text to glyphs.

4.6 Transformations

cl-cairo2 defines the structure trans-matrix with the slots xx, yx, xy, yy, x0, y0. The
defaults for these slots give you the identity matrix.

All the functions that use transformation matrices use this structure. Consequently,
cairo_matrix_init has no corresponding function in cl-cairo2: you can construct a trans-
lation matrix using make-trans-matrix.

Some functions are renamed, see Table 3. Generally, functions which manipulate trans

-matrix stuctures start with trans-matrix-, and other a few other functions have been
renamed to avoid conflicts with linear algebra packages.

4.7 Xlib Contexts

The xlib context is not part of cairo – it is a bit of glue code that uses cairo’s X11 surface on
a pixmap, and displays this pixmap when needed (when X11 asks for the window contents
to be redrawn or when cairo draws on the pixmap). The X11 specific code is in a separate
package, so make sure that you load cl-cairo2-x11.

Please remember that the X11 code provided is a proof of concept, only for displaying the
results of Cairo commands interactively in windows. If you would like to use Cairo in your
— possibly more complex — applications, you need to do things differently (for example,
you need you own event loop).

Two contexts are implemented, one uses double-buffered pixmaps, and can be created
by create-xlib-context, the other Xlib image surfaces, and you can create such a context
by create-xlib-image-context. I suggest that you use the latter.

In cl-cairo2, each window maps to a context. The surface is not exposed to the user, who
is only allowed to see the context. This makes memory management and proper cleanup
easier. For example, you can create an xlib-image-context with

6

http://www.cairographics.org/manual/bindings-fonts.html
http://www.pango.org/

cl-cairo2 tutorial Tamás K Papp

(setf *context* (create-xlib-image-context 500 400

:display-name "localhost:0"

:window-name "my pretty drawing"))

If you give nil for display-name, Xlib fill probably figure out a reasonable default, usually
from your $DISPLAY environment variable. You can also specify the background color.

The X11 event loop runs in a separate thread, so you need a Lisp implementation that
supports threads.

When the context destroyed, the window is closed. This works the other way too: when
the window is closed, the context is destroyed. The implementation precludes the resizing
of the window.

The current implementation is not optimized for speed (the whole window is redrawn all
the time) but it is fast enough. If you draw a lot of objects at the same time, it is suggested
that you suspend synchronizing with the X-window server using (sync-lock context).
When you are done, you can call (sync-unlock context), which will automatically sync
the buffer and the window. You can nest calls to sync-lock and sync-unlock, and if you
want to restore syncing unconditionally, use sync-reset, which also performs syncing too.
These are generic functions which do nothing for other contexts.

4.8 MS-Windows contexts

Kei Suzuki contributed code for interfacing Cairo to MS-Windows. Please see package-win.lisp,
you need to load the cl-cairo2-win library to use this code.

4.9 To Do

The list below reflects my priorities. If you need something, please let me know.

• CLOS integration for fonts (as suggested here)

Things I don’t plan on doing, but will be happy to incorporate if somebody does it:

• Pango and/or glyph handling

5 Examples

Below is an extended example, which can be found in example.lisp. Figures 2–4 show the
results.

7

http://www.cairographics.org/manual/bindings-fonts.html

cl-cairo2 tutorial Tamás K Papp

(require :asdf)

(asdf:operate ’asdf:load-op :cl-cairo2)

;;;; Make a test package

(defpackage :cairo-example

(:use :common-lisp :cl-cairo2))

(in-package :cairo-example)

;;;;

;;;; pathname where files will end up, you need to change it to

;;;; something that makes sense on your system if you are running

;;;; these examples

;;;;

(setf *default-pathname-defaults* #P"/home/tpapp/software/cl-cairo2/

tutorial/")

(assert (directory *default-pathname-defaults*))

;;;;

;;;; short example for the tutorial

;;;;

(defparameter *surface* (create-pdf-surface "example.pdf" 200 100))

(setf *context* (create-context *surface*))

(destroy *surface*)

;; clear the whole canvas with blue

(set-source-rgb 0.2 0.2 1)

(paint)

;; draw a white diagonal line

(move-to 200 0)

(line-to 0 100)

(set-source-rgb 1 1 1)

(set-line-width 5)

(stroke)

;; destroy context, this also destroys the surface and closes the file

(destroy *context*)

8

cl-cairo2 tutorial Tamás K Papp

;;;; very simple text example

(setf *context* (create-pdf-context "simpletext.pdf" 100 100))

(move-to 0 100)

(set-font-size 50)

(show-text "foo")

(destroy *context*)

;;;;

;;;; text placement example

;;;;

;;;; This example demonstrates the use of text-extents, by placing

;;;; text aligned relative to a red marker.

;;;;

;;;; helper functions

;;;;

(defun show-text-aligned (text x y x-align y-align &optional

(context *context*))

"Show text aligned relative to (x,y)."

(with-context (context)

(multiple-value-bind (x-bearing y-bearing width height)

(text-extents text)

(move-to (- x (* width x-align) x-bearing)

(- y (* height y-align) y-bearing))

(show-text text))))

(defun mark-at (x y d red green blue &optional (context *context*))

"Make a rectangle of size 2d around x y with the given colors,

 50% alpha. Used for marking points."

(with-context (context)

(rectangle (- x d) (- y d) (* 2 d) (* 2 d))

(set-source-rgba red green blue 0.5)

(fill-path)))

(defun show-text-with-marker (text x y x-align y-align &optional (context *

context*))

9

cl-cairo2 tutorial Tamás K Papp

"Show text aligned relative to a red market at (x,y)."

(with-context (context)

(mark-at x y 2 1 0 0)

(set-source-rgba 0 0 0 0.6)

(show-text-aligned text x y x-align y-align)))

(defparameter width 500)

(defparameter height 500)

(defparameter text "Fog") ; contains g, which goes below baseline

(defparameter size 50)

(defparameter x 20d0)

(defparameter y 50d0)

(setf *context* (create-pdf-context "text.pdf" width height))

;; white background

(set-source-rgb 1 1 1)

(paint)

;; setup font

(select-font-face "Arial" :normal :normal)

(set-font-size size)

;; starting point

(mark-at x y 2 1 0 0) ; red

;; first text in a box

(multiple-value-bind (x-bearing y-bearing text-width text-height)

(text-extents text)

(let ((rect-x (+ x x-bearing))

(rect-y (+ y y-bearing)))

(rectangle rect-x rect-y text-width text-height)

(set-source-rgba 0 0 1 0.3) ; blue

(set-line-width 1)

(set-dash 0 ’(5 5))

(stroke)))

(set-source-rgba 0 0 0 0.6)

(move-to x y)

(show-text text)

(dolist (x-align ’(0 0.5 1))

(dolist (y-align ’(0 0.5 1))

(show-text-with-marker text (+ x (* x-align 300))

(+ y (* y-align 300) 100)

10

cl-cairo2 tutorial Tamás K Papp

x-align y-align)))

;; done

(destroy *context*)

;;;;

;;;; Lissajous curves

;;;;

(defparameter size 500)

(defparameter margin 20)

(defparameter a 9)

(defparameter b 8)

(defparameter delta (/ pi 2))

(defparameter density 2000)

(setf *context* (create-pdf-context "lissajous.pdf" size size))

;; pastel blue background

(rectangle 0 0 width height)

(set-source-rgb 0.9 0.9 1)

(fill-path)

;; Lissajous curves, blue

(labels ((stretch (x) (+ (* (1+ x) (- (/ size 2) margin)) margin)))

(move-to (stretch (sin delta)) (stretch 0))

(dotimes (i density)

(let* ((v (/ (* i pi 2) density))

(x (sin (+ (* a v) delta)))

(y (sin (* b v))))

(line-to (stretch x) (stretch y)))))

(close-path)

(set-line-width .5)

(set-source-rgb 0 0 1)

(stroke)

;; "cl-cairo2" in Arial bold to the center

(select-font-face "Arial" :normal :bold)

(set-font-size 100)

(set-source-rgba 1 0.75 0 0.5) ; orange

(show-text-aligned "cl-cairo2" (/ size 2) (/ size 2) 0.5 0.5)

11

cl-cairo2 tutorial Tamás K Papp

;; done

(destroy *context*)

;;;;

;;;; transformation matrix example (for Judit, with love)

;;;;

;;;; This example uses the function heart which fills a heart-shape

;;;; with given transparency at the origin, using a fixed size.

;;;; Rotation, translation and scaling is achieved using the

;;;; appropriate cairo functions.

(defun heart (alpha &optional (context *context*))

"Draw a heart with fixed size and the given transparency alpha.

 Heart is upside down."

(with-context (context)

(let ((radius (sqrt 0.5)))

(move-to 0 -2)

(line-to 1 -1)

(arc 0.5 -0.5 radius (deg-to-rad -45) (deg-to-rad 135))

(arc -0.5 -0.5 radius (deg-to-rad 45) (deg-to-rad 215))

(close-path)

(set-source-rgba 1 0 0 alpha)

(fill-path))))

(defparameter width 1024)

(defparameter height 768)

(defparameter max-angle 40d0)

(setf *context* (create-pdf-context "hearts.pdf" width height))

;; fill with white

(rectangle 0 0 width height)

(set-source-rgb 1 1 1)

(fill-path)

;; draw the hearts

(dotimes (i 200)

(let ((scaling (+ 5d0 (random 40d0))))

(reset-trans-matrix) ; reset matrix

(translate (random width) (random height)) ; move the origin

(scale scaling scaling) ; scale

12

cl-cairo2 tutorial Tamás K Papp

(rotate (deg-to-rad (- (random (* 2 max-angle))

max-angle 180))) ; rotate

(heart (+ 0.1 (random 0.7)))))

(destroy *context*)

;;;;

;;;; make a rainbow-like pattern

;;;;

;;;;

(defparameter width 100)

(defparameter height 40)

(setf *context* (create-pdf-context "pattern.pdf" width height))

(with-linear-pattern rainbow (0 0 width 0)

‘((0 (0.7 0 0.7 0)) ;rgb(a) color as list

(1/6 ,cl-colors:+blue+) ;color as cl-color

(2/6 ,cl-colors:+green+)

(3/6 ,cl-colors:+yellow+)

(4/6 ,cl-colors:+orange+)

(5/6 ,cl-colors:+red+)

(1 ,cl-colors:+violetred+))

(rectangle 0 0 width height)

(set-source rainbow)

(fill-path))

(destroy *context*)

;;;;

;;;; example for with-png-file

;;;;

(with-png-file ("simple.png" :rgb24 200 100)

;; clear the whole canvas with blue

(set-source-rgb 0.2 0.2 1)

(paint)

;; draw a white diagonal line

(move-to 200 0)

(line-to 0 100)

(set-source-rgb 1 1 1)

(set-line-width 5)

13

cl-cairo2 tutorial Tamás K Papp

(stroke))

Fog

Fog

Fog

Fog

Fog

Fog

Fog

Fog

Fog

Fog

Figure 2: text.pdf

14

cl-cairo2 tutorial Tamás K Papp

cl-cairo2

Figure 3: lissajous.pdf

Figure 4: hearts.pdf

15

cl-cairo2 tutorial Tamás K Papp

Figure 5: pattern.pdf

16

	Introduction
	Installation and loading
	Getting started
	Implementation notes
	General
	Surfaces
	Contexts
	Paths
	Text
	Transformations
	Xlib Contexts
	MS-Windows contexts
	To Do

	Examples

