Väli

Wikipediasta
Siirry navigaatioon Siirry hakuun
Tämä artikkeli käsittelee matemaattista termiä. Väli voi myös tarkoittaa välilyöntiä.

Matematiikassa väli on (osittain tai täysin) järjestetyn joukon osajoukko, jonka alkiot sijaitsevat jonkin kahden kiinteän rajan välillä.

Määritelmä

[muokkaa | muokkaa wikitekstiä]

Olkoon järjestetty joukko ja , missä . Tällöin pisteiden a ja b välinen

  • suljettu väli on joukko

  • avoin väli on joukko

  • oikealta puoliavoin väli on joukko

  • vasemmalta puoliavoin väli on joukko

missä merkinnällä tarkoitetaan järjestyksen antamaa relaatiota: alkioilla pätee jos ja vain jos ja .

Yleisesti joukko on väli jos se voidaan kirjoittaa jollain edellä olevalla tavalla.

Päätepisteiden kuulumattomuus voidaan ilmaista myös väärinpäin kirjoitetuilla hakasulkeilla, esimerkiksi avoin väli on tällöin [1]

Tunnettu esimerkki järjestetystä joukosta, jossa välien käyttö on osoittautunut erittäin hyödylliseksi on (laajennettu) reaaliakseli varustettuna tavallisella lukujen ja äärettömyyksien suurutta mittaavalla järjestyksellä. Tässä avaruudessa nimittäin voidaan välien helposti konstruoida topologioita avaruuteen ja niille voidaan määritellä päätepisteiden etäisyyden avulla helposti geometrinen mitta. Täällä siis välit koostuvat niistä reaaliluvuista, jotka ovat jonkin kahden kiinteän luvun (tai +/-äärettömän) välissä.

Esimerkiksi väli avoin väli koostuu janasta nollasta yhteen, jossa päätepisteitä ei oteta mukaan ja vastaavasti samasta janasta, johon lisätään päätepisteet.

Joukossa avoimet välit muodostavat kannan euklidiselle topologialle ja puoliavoimet välit muodostavat kannan niin sanotulle puoliavoimelle topologialle.

Vaikka välin käsite on vahvasti sidoksissa joukon järjestykseen, välien käsite voidaan myös yleistää järjestettyjen joukkojen tuloavaruuksille. Tuloavaruuksiin ei voi yleisesti periyttää järjestystä tulon jäsenistä, kuten jo esimerkiksi tason käy.

Olkoon osittain tai täysin järjestettyjä joukkoja, missä ja J jokin epätyhjä joukko. Tällöin joukko on tuloväli, jos on olemassa välit siten, että

Esimerkiksi avaruudessa tulovälit (kutsutaan tässä tapauksessa myös n-välit) ovat n:n reaaliakselin välin tuloja eli eräänlaisia useampiulotteisia laatikoita (avaruudessa tulovälit ovat suorakaiteita ja avaruudessa tulovälit ovat särmiöitä).

Avaruudessa avoimien välien tuloina saadut tulovälit muodostavat avaruuden normitopologialle kannan.

  1. Reaaliluvut – Lukusuora Tampereen teknillisen yliopiston sivusto. Arkistoitu 2.10.2006. Viitattu 12.8.2011.